


# AGX User's Manual



ADS document # 110115-40012, preliminary

## **Applied Data Systems**

## www.applieddata.net

9140 Guilford Road Columbia MD 21046 USA 301-490-4007

© 2003 ADS

## About the Cover Image

The cover image shows a fully populated Rev 2 AGX.

## **Printing this Manual**

This manual has been designed for printing on both sides of a 8.5x11 inch paper, but can be printed single-sided as well. It has also been optimized for use in electronic form with active cross-reference links for quick access to information.

## **Revision History**

The following list summarizes the changes that have been made between released revisions of the manual.

| REV | DESCRIPTION                                | BY |
|-----|--------------------------------------------|----|
| 1   | first preliminary release (Chapter 3 only) |    |
| 2   | second preliminary release                 |    |

(This page intentionally blank)



## **Table of Contents**

| About the   | Cover Image     | i                                |
|-------------|-----------------|----------------------------------|
| Printing th | is Manual       | i                                |
| Revision I  | listory         | i                                |
| Table of C  | ontents         | iii                              |
| 1           | Introduction    |                                  |
|             | 1.1 Overvi      | ew1                              |
|             | 1.2 Feature     | 281                              |
|             | 1.2.1 F         | Processor                        |
|             | 1.2.2 F         | Power Supply1                    |
|             |                 | Memory                           |
|             |                 | Communications                   |
|             |                 | Jser Interface and Display       |
|             |                 | Discrete I/O                     |
|             |                 | Audio Interface                  |
|             | 1.3 Block I     | Diagram                          |
| 2           | Getting Started | d5                               |
|             | 2.1 Develo      | pment Systems5                   |
|             | 2.1.1 \$        | System Components                |
|             | 2.2 Freque      | ntly Asked Questions             |
|             | 2.3 Organiz     | zation of this Manual6           |
|             | 2.4 Errata,     | Addenda and Further Information7 |
| 3           | Hardware Ref    | erence                           |
|             | 3.1 Identify    | ying Connectors                  |
|             | 3.1.1 I         | Locating Connectors              |
|             |                 | Determining Pin Numbers          |
|             | 3.2 Switch      | es, Controls and Indicators      |
|             |                 | 51: DIP Switch                   |
|             |                 | SW1: Reset Switch                |
|             |                 | LED Indicators                   |
|             |                 | Software-Controllable LEDs       |
|             |                 | Ethernet LEDs                    |
|             | _               | USB LED                          |
|             |                 | rDA Transceiver                  |
|             | 3.2.5 V         | VR1: Vee Contrast Adjustment     |

| 3.3 Jum        | per Settings                                                      | 11 |
|----------------|-------------------------------------------------------------------|----|
| 3.3.1          | JP1: LCD Display Power                                            | 11 |
| 3.3.2          | JP2: Source of 3.3 V Power (Vddx)                                 |    |
| 3.3.3          | JP3: LCD Display Data Voltage                                     |    |
| 3.3.4          | JP4: Serial 2 Mode Select                                         |    |
| 3.3.5          | JP5: RS-485 Terminator                                            |    |
| 3.3.6          | JP6-7, JP10-13: Serial Port 1 Mode Select                         |    |
| 3.3.7          | JP9: Vee Polarity Select                                          |    |
| 3.3.8          | JP14: Source of Sleep Mode Power                                  |    |
| 3.3.9          | JP36: LCD UD Signal                                               |    |
| 3.3.10         | JP37: LCD RL Signal                                               |    |
|                | -                                                                 |    |
| 3.4 Sigr       | al Headers                                                        |    |
| 3.4.1          | J1: USB Host Port                                                 |    |
| 3.4.2          | J2: Input Power Connector                                         | 15 |
| 3.4.3          | J3: Backlight Inverter                                            |    |
| 3.4.4          | J4: CompactFlash / Expansion Bus                                  | 16 |
| 3.4.5          | J7: Ethernet                                                      |    |
| 3.4.6          | J8: I/O, Analog Inputs, USB Function Port                         |    |
| 3.4.7          | J9: PS/2 Keyboard, VGA Output, Ethernet, System Reset             | 19 |
| 3.4.8          | J10: PCMCIA                                                       | 19 |
| 3.4.9          | J11: LCD Display (34-pin)                                         | 20 |
| 3.4.10         | J12: LCD Signals, LVDS                                            | 21 |
| 3.4.11         | J13: Serial 3                                                     | 21 |
| 3.4.12         | J14: ADSmartIO, Serial 1 and 2, EIA-422/485, I/O                  | 22 |
| 3.4.13         | J15: Audio, Touch Panel, Backlight, CAN, Serial 3, IrDA, USB Host | 23 |
| 3.4.14         | J16: Manufacturing Test Connector                                 | 24 |
| 3.4.15         | J17: CAN Bus                                                      | 24 |
| 3.4.16         | J18: Touch Panel                                                  | 24 |
| 3.4.17         | J19: LCD Display (Hirose)                                         | 25 |
| 3.4.18         | J40: Expanded I/O                                                 | 26 |
|                |                                                                   |    |
| Feature Ret    | Serence                                                           | 29 |
| 4.1 Svst       | em Architecture                                                   | 29 |
| 4.1.1          | Boot Code                                                         |    |
| 4.1.1          |                                                                   |    |
| 4.1.2          | Non-Volatile Memory                                               |    |
| 4.1.3          | Flash Memory                                                      |    |
|                | ADSmartIO EEPROM                                                  |    |
|                | CompactFlash and PCMCIA/ATA Cards                                 |    |
|                | RTC NVRAM                                                         |    |
| 4.1.4          | Interrupts                                                        |    |
| 4.1.5          | CompactFlash / Expansion Bus                                      |    |
| 4.1.6          | PXA255 GPIO Cross-Reference                                       |    |
| 4.2 Rea        | I-Time Clock (RTC)                                                |    |
|                | SmartIO                                                           |    |
| 4.3.1          | Overview                                                          |    |
| 4.3.1<br>4.3.2 |                                                                   |    |
|                | ADSmartIO Features                                                |    |
| 4.3.3          | Digital I/Os                                                      |    |

4

|     | 4.3.4 | Analog Inputs (A/D)                                      |    |
|-----|-------|----------------------------------------------------------|----|
|     | 4.3.5 | Keypad Scan                                              |    |
|     | 4.3.6 | ADSmartIO Signal Cross-Reference                         |    |
| 4.4 | Aud   | io                                                       |    |
|     | 4.4.1 | Microphone Pre-amps                                      |    |
|     | 4.4.2 | Audio Outputs: Speakers and Headphones                   |    |
|     |       | Connecting Speakers                                      |    |
|     |       | Connecting Headphones                                    |    |
|     |       | Using Stereo Headphones and Speakers in the Same System  |    |
| 4.5 | Data  | Communications                                           |    |
|     | 4.5.1 | Serial Ports                                             |    |
|     | 1.5.1 | XScale UART                                              |    |
|     |       | Quad UART                                                |    |
|     | 4.5.2 | USB                                                      |    |
|     |       | USB Host Port                                            |    |
|     |       | USB Function Port                                        |    |
|     |       | USB On-The-Go                                            |    |
|     |       | LED Activity Indicator                                   |    |
|     | 4.5.3 | Ethernet                                                 |    |
|     | 4.5.4 | CAN Bus                                                  |    |
|     | 4.5.5 | I <sup>2</sup> C Bus Master and SMBus                    | 40 |
|     |       | $I^2C$ on the AGX<br>XScale $I^2C$                       |    |
|     |       | ADSmartIO I <sup>2</sup> C                               |    |
|     |       | SMBus                                                    |    |
|     | 4.5.6 | Multimedia Card (MMC) Controller                         | 41 |
| 4.6 | Disc  | crete I/Os                                               |    |
|     | 4.6.1 | Digital I/Os                                             |    |
|     | 4.6.2 | Analog Inputs                                            |    |
|     | 4.6.3 | Analog Outputs (PWM)                                     |    |
|     |       |                                                          |    |
| 4.7 | Tou   | ch Panel                                                 |    |
| 4.8 | Disp  | olay Controller                                          | 43 |
|     | 4.8.1 | The XScale Display Controller                            | 43 |
|     | 4.8.2 | The Epson Display Controller                             | 43 |
|     | 4.8.3 | Using the LCD Display Signals                            |    |
|     |       | Panel Voltages                                           |    |
|     |       | LCD Signals                                              |    |
|     |       | Creating LCD Display Cables                              |    |
|     |       | LVDS for LCD Displays                                    |    |
|     |       | Brightness Control (Backlight)                           |    |
|     | 4.8.4 | Contrast Control (Vee and Vcon)<br>Using Analog Displays | 15 |
|     | 4.8.4 | Developing Display Drivers                               |    |
|     |       |                                                          |    |
| 4.9 |       | /RFI and ESD Protection                                  |    |
|     | 4.9.1 | Agency Certifications                                    |    |
|     | 4.9.2 | Protecting the Power Supply Inputs                       |    |

| 5 | Power and I    | Power Management                                  | 47         |
|---|----------------|---------------------------------------------------|------------|
|   | 5.1 Pow        | er Management Modes                               | 47         |
|   | 5.1.1          | XScale Power Management Modes                     | 47         |
|   | 5.1.2          | Power Management on the AGX                       |            |
|   | 5.2 Arch       | nitectural Overview and Power Management Features | 48         |
|   | 5.2.1          | Power Supply Architecture                         |            |
|   | 5.2.2          | Subsystem Partitioning                            |            |
|   | 5.2.3          | System Sleep                                      | 50         |
|   |                | RQOnOff Input                                     |            |
|   | 5.0.4          | Software Control                                  | <b>5</b> 1 |
|   | 5.2.4          | System Wakeup                                     |            |
|   |                | RQOnOff Input<br>Touch Panel                      |            |
|   |                | Timed Wakeup                                      |            |
|   |                | ADSmartIO                                         |            |
|   | 5.2.5          | Backlight Power                                   | 51         |
|   | 5.2.6          | Power Supply Efficiency                           |            |
|   | 5.3 Desi       | gning for Optimal Power Management                |            |
|   | 5.3.1          | Create a Power Budget for Peripherals             |            |
|   | 0.011          | 3.3 V Loads                                       |            |
|   |                | 5 V Loads                                         |            |
|   |                | Loads on Main Supply                              |            |
|   | 5.3.2          | Power Loads During Sleep                          |            |
| 6 | System Spe     | cifications                                       | 55         |
|   | 6.1 Mec        | hanical Specifications                            | 55         |
|   | 6.1.1          | Mechanical Drawing                                | 55         |
|   | 6.1.2          | Mounting Holes                                    | 55         |
|   | 6.1.3          | Clearances                                        | 56         |
|   | 6.1.4          | Production Options                                | 56         |
|   |                | Mating Headers on Underside of Board              |            |
|   |                | Removal of PCMCIA Header<br>Connector Plating     |            |
|   |                | ·                                                 |            |
|   |                | trical Specifications                             |            |
|   | 6.2.1          | Reset, Sleep, Wakeup, Temperature                 |            |
|   | 6.2.2          | Power Supply                                      |            |
|   | 6.2.3<br>6.2.4 | Power Consumption<br>Display                      |            |
|   | 6.2.5          | Touch Panel Controller                            |            |
|   | 6.2.6          | ADSmartIO Controller                              |            |
|   | 6.2.7          | System Controller                                 |            |
|   | 6.2.8          | System Controler                                  |            |
|   | 6.2.9          | USB                                               |            |
|   | 6.2.10         | Ethernet                                          |            |
|   | 6.2.11         | CAN Bus                                           |            |
|   | 6.2.12         | Audio                                             |            |
|   | 6.2.13         | PXA255 Processor                                  |            |
|   | 6.2.14         | Crystal Frequencies                               | 64         |

7

| 6     | 5.2.15 PCMCIA and CompactFlash Controller | 65 |
|-------|-------------------------------------------|----|
| Board | l Revision History                        | 67 |
| 7.1   | Identifying the board revision            | 67 |
| 7.2   | Revision History                          | 67 |
| 7     | 7.2.1 Revision 2                          | 67 |

(This page intentionally blank)

## 1 Introduction

#### 1.1 Overview

The AGX is a full-featured single board computer using the PXA255 XScale RISC microprocessor. The AGX is designed to meet the needs of embedded and graphical systems developers.

This manual applies to the most current revision of the AGX listed in the Revision History, Chapter 7.

#### 1.2 Features

#### 1.2.1 Processor

- PXA255 32-bit XScale
- Clock rates up to 400 MHz
- Voltage and frequency scaling

## 1.2.2 Power Supply

- 5 V Main Power
- System Backup and Real-Time Clock Power Inputs

#### 1.2.3 Memory

- 16, 32, 64 or 128 <sup>1</sup> MiB<sup>2</sup> synchronous DRAM
- 8, 16, 32 or 64 <sup>3</sup> MiB flash RAM
- PCMCIA and CompactFlash<sup>4</sup> (CF), Type I and II, 3.3 and 5 V

<sup>&</sup>lt;sup>1</sup> The AGX supports 128 MiB SDRAM. However, those components are not yet commercially available as of April 2003.

<sup>&</sup>lt;sup>2</sup> MiB is the IEC abbreviation for mebibyte =  $2^{20}$  byte = 1 048 576 byte. The kibi and mebi abbreviations are based on the 1998 IEC standard for binary multiples. For further reading, see the US NIST web site, <u>http://physics.nist.gov/cuu/Units/binary.html</u>

<sup>&</sup>lt;sup>3</sup> The BitsyX supports synchronous and asynchronous flash. The 64 MiB flash option is available only in synchronous flash.

<sup>&</sup>lt;sup>4</sup> CompactFlash is a trademark of the CompactFlash Association, <u>http://www.compactflash.org/</u>.

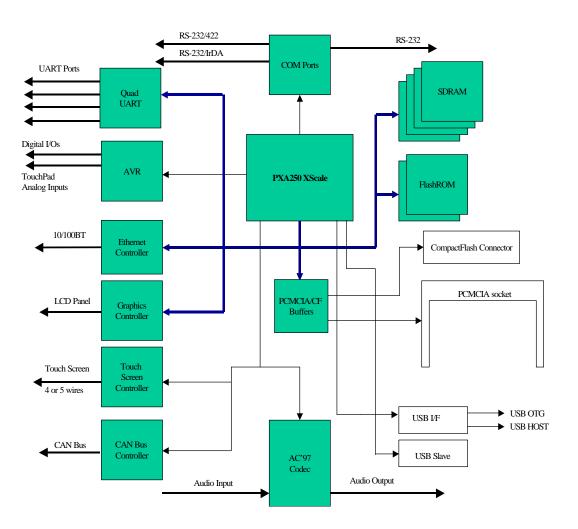
## 1.2.4 Communications

- USB 1.1 Host port (low 1.5 Mbit/s and full 12 Mbit/s speeds)
- Full speed Client port
- USB On-the-Go
- Seven Serial Ports
  - Serial 1: EIA/TIA-232, 3.3V CMOS (5-wire), EIA/TIA-422/485 or J1708
    Serial 2: EIA/TIA-232, 3.3V CMOS (5-wire) or IrDA
    Serial 3: EIA/TIA-232 or 3.3V CMOS (9-wire)
    Serial A and B: EIA/TIA-232 or 3.3V CMOS (9-wire)
    Serial C and D: 3.3V CMOS (9-wire)
- 10/100BT Ethernet, RJ45
- CAN bus
- CompactFlash Interface (card guides not included) and PCMCIA

## 1.2.5 User Interface and Display

- Flat Panel Interface
- Option for External Frame Buffer for extended performance
- Backlight Control Signals for Intensity and On/off
- Software-Controlled VEE Generator for passive LCD contrast control
- Analog Touch Panel Interface (four- or five-wire options)
- External PS/2 Keyboard Support

## 1.2.6 Discrete I/O


- Sixteen ADSmartIO<sup>TM</sup> ports configurable for digital I/O and/or up to 8x8 matrix keypad
- Ten additional general-purpose digital I/Os
- Four A/D inputs

#### 1.2.7 Audio Interface

- AC'97 Codec
- Stereo Microphone Input
- Stereo 1W Speaker Outputs
- Headphone Output

## 1.3 Block Diagram

The following diagram illustrates the system organization of the AGX.



(This page intentionally blank)

## 2 Getting Started

## 2.1 Development Systems

AGX boards are shipped as development systems designed to get the developer up and running quickly.

#### To use the system, simply plug power supply into the mini DIN-8 receptacle on the system.

If the screen does not display anything after five to ten seconds, check the *Frequently Asked Questions*, below. Most operating systems cold boot within twenty seconds.

## 2.1.1 System Components

A typical development system is shown at right (system shown includes a BitsyX). It consists of the following components[tbd]:

- AGX single-board computer
- Flat panel display and cable
- Backlight inverter and cable
- Touch screen and cable
- 120 VAC power adapter
- Plexiglas mounting
- Developer's Cable Kit including
  - Serial Port DB9 adapter (ADS cable #610111-80001)
  - DB9F/F null modem cable
- Operating system of your choice
- User's Guide (this document and operating system guide)

Please make sure you have received *all* the components before you begin your development.

#### 2.2 Frequently Asked Questions

The following are some of the most commonly asked questions for development systems:

#### Q: When I plug in power, my screen is white and nothing comes up on it.

A: Check the connector seating. The flat panel connector may have come loose in shipping. Press it firmly into the panel and reapply power to your system.

#### Q: When I plug in power, the LED doesn't turn on.

A: Your system may still be booting. The LED is software controlled and is not necessarily turned on at boot.

#### Q: Do I have to turn off the system before I insert a PCMCIA or CompactFlash card?

A: No. The AGX supports hot-swapping of PCMCIA and CompactFlash cards. Consult the operating system documentation for details.

#### **Q:** Do I need to observe any ESD precautions when working with the system?

A: Yes. If possible, work on a grounded anti-static mat. At a minimum, touch an electrically grounded object before handling the board or touching any components on the board.



#### **Q:** What do I need to start developing my application for the system?

A: You will need a flash ATA card (16 MiB or larger, 32 MiB recommended) and the cables supplied with your system to interface your development station to the system. For further direction, consult the ADS guide for the installed operating system.

#### Q: Who can I call if I need help developing my application?

A: ADS provides technical support to get your development system running. For customers who establish a business relationship with ADS, we provide support to develop applications and drivers.

#### **Q:** Is there online support?

A: Yes. Information about the AGX hardware and software is available on the ADS support site at <u>http://www.applieddata.net/support</u>. See section 2.4 for further details.

#### **Q:** Can I upgrade the version of the operating system?

A: Yes. ADS provides regular operating system updates on its developers' web site. For operating systems not maintained by ADS, contact the operating system vendor.

#### Q: I would like to interface to a different display panel. How can I do this?

A: ADS may have already interfaced to the panel you are interested in. Consult ADS for availability.

## 2.3 Organization of this Manual

The manual organizes information in five key sections:

| Introduction       | Provides an overview of the functionality and organization of the AGX, as well as how to use this manual.                            |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Hardware Reference | Describes the configuration settings and pinouts for all connectors and jumpers on the AGX.                                          |
| Feature Reference  | Gives details about the various subsystems of the AGX.                                                                               |
| Power Management   | Provides key information about power management, tips for system integration and electrical and mechanical interface specifications. |
| Specifications     | Electrical and mechanical interface specifications.                                                                                  |

To locate the information you need, try the following:

- 1. Browse the *Table of Contents*. Section titles include connector designators and their function.
- 2. Follow cross-references between sections.
- 3. View and search this manual in PDF format

## 2.4 Errata, Addenda and Further Information

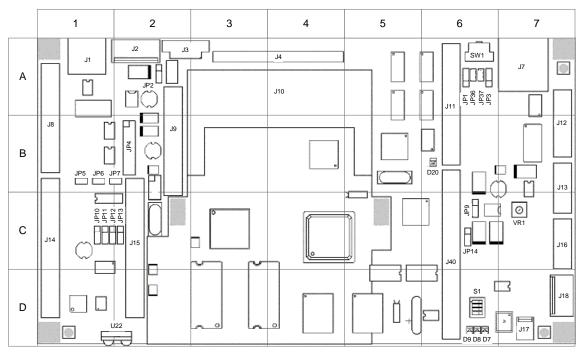
Errata and addenda to this manual are posted on the ADS support forums along with the latest release of the manual. Consult the support forums any time you need further information or feel information in this manual is in error. You may access the forums from the ADS support site,

#### http://www.AppliedData.net/Support

In addition to manuals, the support forums include downloads, troubleshooting guides, operating system updates and answers to hundreds of questions about developing applications for ADS products. You may also post questions you have about ADS products on the forums.

(This page intentionally blank)

## 3 Hardware Reference


This section gives an overview of the hardware features of the AGX. This overview includes a description of the switches, jumper settings, connectors and connector pinouts.

## 3.1 Identifying Connectors

The section describes how to locate connectors on the board and how to determine how each header is numbered.

#### 3.1.1 Locating Connectors

The following diagram illustrates the location of key components on the AGX. For example, the PXA255 processor is located at C4 and the reset button is at A6. Component listings in this chapter refer to this diagram.



## 3.1.2 Determining Pin Numbers

The pins of headers and connectors on ADS products are numbered sequentially. Double-row headers place even pins on one side and odd pins on the other. The diagram at right indicates how pins are numbered, as seen from the component side<sup>5</sup> of the board.



To locate pin 1 of a connector or jumper, try the following:

<sup>&</sup>lt;sup>5</sup> The "component side" of the AGX is the one on which the PCMCIA ejector is installed. As a factory option, some through-hole connectors may be installed on the "bottom side" of the AGX.

1. Look for a visible number or marking on the board that indicates connector pin numbering. A notch or dot usually indicates pin 1.

2. Look at the underside of the board. The square pad is pin 1.

3. Download the mechanical drawing of the AGX from the ADS Support site (section 2.4). The square or indicated pad on each connector is pin 1.

#### 3.2 Switches, Controls and Indicators

This section describes various switches, controls and indicators on the AGX board. The location indicated for each item refers to the grid diagram of the AGX in section 3.1.1.

#### 3.2.1 S1: DIP Switch

Location on board: D6

S1 is a four-position DIP switch. When in the "ON" position, switches are closed and connect to ground. Otherwise they are pulled up. The DIP switches connect to the system controller.

Most operating systems on the AGX reserve these switches for their use. Consult the operating system manual for details.

#### 3.2.2 SW1: Reset Switch

Location on board: A6

SW1 is the reset button for the AGX. This switch issues a hardware reset to the PXA255 and system peripherals. Press this button to restart the AGX without cycling power. Most operating systems clear the contents of DRAM when a hardware reset occurs.

Pressing SW1 shorts the /RESET\_IN signal (J9 pin 16) to ground. If your peripherals need to be reset when this button is pressed, use the RESET\_OUT signal on J9, pin 29. You can hold the AGX in reset by pressing and holding this button.

#### 3.2.3 LED Indicators

The AGX has several onboard light-emitting diodes (LEDs) to indicate system operation. Some are software-controllable, while others indicate the status of specific functions.

#### Software-Controllable LEDs

Location on board: D6

Three LEDs are controlled by the CPU (section 4.1.6) and are used to indicate boot and operating system status. These LEDs can often be used by applications to indicate operational status.

| Signal Name | Designator | Color |
|-------------|------------|-------|
| LEDOUTO     | D9         | Green |
| LEDOUT1     | D8         | Amber |
| LEDOUT2     | D7         | Red   |

The LEDs are driven by the same buffers as the display driver data lines, so will be off when the display buffers are disabled (see power management section 5.2.2). The LEDs are

#### Ethernet LEDs

Location on board: D7 (on Ethernet socket J7)

Two LEDs on Ethernet socket J7 indicate when a valid Ethernet connection has been made and when there is activity on the bus.

#### USB LED

Location on board: B6

This LED indicates when there is activity on Philips USB ports (On-The-Go or host). See section 4.5.2 for further details.

| Signal Name | Designator | Color |
|-------------|------------|-------|
| USB_GL      | D20        | Green |

#### 3.2.4 IrDA Transceiver

Location on board: D1-D2

U22 is an IrDA transceiver that converts Serial 2 electrical signals to infrared light pulses for IrDA communications. See section 4.5.1 for further details.

#### 3.2.5 VR1: Vee Contrast Adjustment

Location on board: C7

Vee is the contrast adjustment voltage required for most passive LCD displays. VR1 and a PWM signal set the output voltage for Vee. See section 4.8.3 for further details.

#### 3.3 Jumper Settings

Jumpers on the AGX select a variety of operational modes. All use 2mm shorting blocks (shunts) to select settings. Turn off power to the AGX before changing the position of a shunt.

The location indicated for each item refers to the grid diagram of the AGX in section 3.1.1

#### 3.3.1 JP1: LCD Display Power

Type: 3-post header, 2mm Location on board: A6

This jumper selects the supply voltage for the LCD display. The voltage selected here is passed to the *PNL\_PWR* pins on J11 and J19.

| Jumper setting | Voltage Selected |
|----------------|------------------|
| 1-2            | Vddx (3.3 V)     |
| 2-3            | Vcc (5.0 V)      |

WARNING! Make sure you have selected the correct voltage before connecting the panel. Flat panels can be irreparably damaged by incorrect voltages.

3.3.2 JP2: Source of 3.3 V Power (Vddx)

Type: 3-post header, 2mm Location on board: A2 This jumper selects the source of 3.3 V power, Vddx, for the system. Standard production systems include an onboard 3.3 V regulator, but an external 3.3 V supply (+3.3V\_IN from J2) can alternatively be used.

| Jumper setting | Vddx is supplied by |
|----------------|---------------------|
| 1-2            | external source     |
| 2-3            | internal regulator  |

#### 3.3.3 JP3: LCD Display Data Voltage

Type: 3-post header, 2mm Location on board: A6

This jumper selects the voltage for the data signals to the LCD display.

Important: These jumpers are set at the factory to match the panel and drivers shipped with the system. You may damage the panel or panel drivers if you change this jumper setting.

Tip: Most 5 V panels will run correctly with 3.3 V data.

| Jumper setting | Data to display is |
|----------------|--------------------|
| 1-2            | 3.3 V (Vddx)       |
| 2-3            | 5.0 V (Vcc)        |

## 3.3.4 JP4: Serial 2 Mode Select

Type: 2x9 header, unshrouded, 2mm Location on board: B2

This header selects the communications mode of Serial Port 2 of the PXA255.

The operating system must configure the processor for the target serial mode. The table below lists the standard voltages to expect on the transmit line of the port when the transmitter is idle.

Important: When using Serial 2 as IrDA, make sure that the operating system configures the port as IrDA. Otherwise, the transmitter may be turned on continuously, which will drain significant amounts of power and may damage the IrDA transmitter.

| Serial 2 Mode     | JP7 Shunt Settings                          | Tx Vidle <sup>6</sup> |
|-------------------|---------------------------------------------|-----------------------|
| RS-232            | 1-2, 3-4, 7-8, 9-10,<br>11-12, 15-16, 17-18 | -6 V                  |
| 3.3V CMOS         | 1-3, 8-10<br>11-13,16-18                    | 3.3 V                 |
| IrDA <sup>7</sup> | 3-5, 6-8                                    | 0 V                   |

#### 3.3.5 JP5: RS-485 Terminator

Type: 2-post header, 2mm Location on board: B1

<sup>&</sup>lt;sup>6</sup> Typical idle voltages are listed. Actual voltages may vary.

<sup>&</sup>lt;sup>7</sup> The IrDA transceiver is enabled with the IrDAOn signal from the system controller CPLD.

| Jumper setting | RS-485 Terminator |
|----------------|-------------------|
| 1-2            | installed         |
| n/c            | not installed     |

Install this jumper to make the AGX the last device in an RS-485 network. Shorting the pins of this header places a 120  $\Omega$  termination resistor across the RS-485 RX lines.

## 3.3.6 JP6-7, JP10-13: Serial Port 1 Mode Select

Type: 3-post headers, 2mm Location on board: B1-C2

Serial port 1 can be field-configured for operation in RS-232, RS-422 and RS-485 modes. It can also be factory-configured for J1708 or 3.3V CMOS operation in volume production.

Jumpers JP6, JP7 and JP10 through JP13 select between RS-232 and RS-485/422 mode and set the duplex mode of RS-485/422.

RS-422 and RS-485 are differential serial protocols with the same voltage characteristics. RS-422 is a point-to-point protocol while RS-485 turns off the transmitter when not in use, allowing multidrop installations. Each can be configured in half- or full-duplex mode. The Graphics Client Plus supports RS-422 by leaving the transmitter enabled all the time.

In half-duplex mode, TX+/RX+ and TX-/RX- are shorted together. Half-duplex devices can see their own transmissions. Connect to either the + or – connection on J7, but make sure to observe correct polarity.

You may find the following RS-485/422 signal locations helpful for diagnostic purposes: JP6.2 TX+; JP6.1 RX+; JP7.2 TX-; JP7.1 RX-; JP1.1 RX\_enable; JP12.1 TX\_enable.

Headers shaded gray in the following table are not relevant to the mode listed, but are shown for reference.

| Mode                       |     | Jumper Settin             | g                                                             |
|----------------------------|-----|---------------------------|---------------------------------------------------------------|
|                            | JP5 | <b>JP6</b>                | <b>JP7</b>                                                    |
| RS-232                     |     | 1 1<br>2 3<br>3 JP10 JP11 | 1 1<br>2 3<br>3 JP12 JP13                                     |
| RS-485/422                 | JP5 | JP6                       | JP7                                                           |
| Half Duplex<br>(two-wire)  |     | 1<br>2<br>3<br>JP10 JP11  | 1         1           2         3           JP12         JP13 |
|                            | JP5 | JP6                       | JP7                                                           |
| RS-485/422                 | 1 2 | 1 2                       | 12                                                            |
| Full Duplex<br>(four-wire) |     | 1<br>2<br>3<br>3          | 1<br>2<br>3<br>3                                              |
|                            |     | JP10 JP11                 | JP12 JP13                                                     |

## 3.3.7 JP9: Vee Polarity Select

Type: 3-post header, 2mm Location on board: C6

This jumper selects the polarity of Vee, the contrast control voltage for passive LCD displays. Vee is controlled with a PWM signal from the ADSmartIO. See section 4.8.3 for further details

| Jumper setting | Vee      |
|----------------|----------|
| 1-2            | positive |
| 2-3            | negative |
| n/c            | no Vee   |

## 3.3.8 JP14: Source of Sleep Mode Power

Type: 3-post header, 2mm Location on board: C6

This jumper selects the source of power to back up the AGX when it is in sleep mode. See chapter 5 for further details.

| Jumper setting | Voltage Selected   |
|----------------|--------------------|
| 1-2            | Vperm (J5, pin 6)  |
| 2-3            | <i>Vcc (5.0 V)</i> |

3.3.9 JP36: LCD UD Signal

Type: 2-post header, 2mm Location on board: A6

This jumper determines the voltage for the PNL\_UD signal on J11 and J19. On some activematrix LCD displays, the PNL\_UD signal flips the displayed image bottom-to-top.

| Jumper setting | Connects UD to |
|----------------|----------------|
| 1-2            | GND            |
| n/c            | PNL_PWR        |

3.3.10 JP37: LCD RL Signal

Type: 2-post header, 2mm Location on board: A6

This jumper determines the voltage for the PNL\_RL signal on J11 and J19. On some activematrix LCD displays, the PNL\_RL signal flips the displayed image right-to-left.

| Jumper setting | Connects RL to |
|----------------|----------------|
| 1-2            | GND            |
| n/c            | PNL_PWR        |

## 3.4 Signal Headers

The following tables describe the electrical signals available on the connectors of the AGX. Each section provides relevant details about the connector including part numbers, mating connectors, signal descriptions and references to related chapters.

For information about the location of the connectors on the AGX, refer to section 6.1.1. For details about how to determine pin numbers of a header, see section 3.1. The location indicated for each item refers to the grid diagram of the AGX in section 3.1.1

Legend:

| n/c     | Not connected                 |
|---------|-------------------------------|
| GND     | AGX ground plane              |
| (3.3.8) | Reference section for signals |

Signal Types

I signal is an input to the system

- O signal is an output from the system
- IO signal may be input or output
- P power and ground
- A analog signal
- OCI open-collector/open-drain input
- OC open-collector/open-drain output

#### 3.4.1 J1: USB Host Port

Board connector: USB Type A, Amp 787616-1

Location on board: A1

Connector J1 provides the signals for USB host connectivity. USB mice, keyboards and other USB function devices may be plugged in.

| Pin | Name         | Туре | Description    |
|-----|--------------|------|----------------|
| 1   | USB_M_VCC    | PO   | DC Power Input |
| 2   | USB_M_UDC-   | IO   | USB host +     |
| 3   | $USB_M_UDC+$ | IO   | USB host -     |
| 4   | GND          | Р    | ground         |

#### 3.4.2

#### J2: Input Power Connector

Board Connector: 1x6 Molex #22-23-2061, 0.1 inch spacing

Recommended mating connector: Molex [tbd]

Location on board: A2

J2 supplies power to the AGX.  $+5V_{IN}$  is the main power supply, with a factory option to supply 3.3 V to the system, as well. See section 5.2.1 for an overview of how the AGX power supply is structured.

| Pin | Name     | Туре | Description                                |
|-----|----------|------|--------------------------------------------|
| 1   | $+5V_IN$ | PI   | 5V input power                             |
| 2   | GND_IN   | PI   | Ground input                               |
| 3   | +3.3V_IN | PI   | 3.3V input power (optional)                |
| 4   | +12V_IN  | PI   | 12V input power (for backlight)            |
| 5   | POWERON  | 0    | Output for power supply management (5.2.1) |
| 6   | VPERM    | PI   | "Permanent voltage" (5.2.1)                |

## 3.4.3 J3: Backlight Inverter

Board Connector: Molex 53261-0790

Recommended mating connector: [tbd]

Location on board: A2-A3

| Pin | Name         | Туре | Description                                                               |
|-----|--------------|------|---------------------------------------------------------------------------|
| 1   | +12V         | PO   | Power supply for backlight inverter                                       |
| 2   | $\pm 12 v$   | 10   | (also available on J15 pins 23 and 24)                                    |
| 3   | GND          | Р    | ground                                                                    |
| 4   | GND          | 1    | ground                                                                    |
| 5   | BacklightOn  | OC   | On/off control for backlight inverter<br>(also available on J15, pin 21)  |
| 6   | BacklightPWM | AO   | Brightness control for backlight inverter (also available on J15, pin 22) |
| 7   | GND          | Р    | ground                                                                    |

## 3.4.4 J4: CompactFlash / Expansion Bus

Board Connector : Samtec ASP-100925-01

Recommended Mating Connector: see below Recommended Board-to-Board Connector: none

Location on board: A3-A4

The AGX makes its CompactFlash bus signals available on this header. These signals can be used to add a CompactFlash socket to a daughter board or to expand the capabilities of the AGX as a digital expansion bus. See section 4.1.5 for details.

Although the header included on the AGX does not include guide rails, you can plug a CompactFlash card directly onto this socket for testing purposes. The top of the card should face the PCMCIA header. Support the card mechanically to avoid bending the pins.

| Pin | Name        | Pin | Туре | Description           |
|-----|-------------|-----|------|-----------------------|
| 1   | GND         |     | Р    | ground                |
|     | /CARDBDET2  | 2   | Ι    | Card Detect 2         |
|     | /CARDB16    | 4   | Ι    | 16 Bit Access         |
| 3   | PCBD10      |     | IO   |                       |
| 5   | PCBD9       |     | IO   | Data 8-10             |
| 7   | PCBD8       |     | IO   |                       |
|     | PCBD2       | 6   | IO   |                       |
|     | PCBD1       | 8   | IO   | Data0-2               |
|     | PCBD0       | 10  | IO   |                       |
| 9   | CARDBSTSCHG |     | Ι    | Status Change         |
| 11  | CARDBSPK    |     | Ι    | Speaker Input         |
| 13  | /CARDBREG   |     | 0    | Register Access       |
| 15  | VCC         |     | PO   | 5 V                   |
| 17  | /CARDBWAIT  |     | Ι    | Wait                  |
| 19  | CARDBRES    |     | 0    | Reset                 |
| 21  | /CARDBVS2   |     | Ι    | Voltage Sense 2 Input |

| Pin | Name          | Pin | Туре      | Description                         |
|-----|---------------|-----|-----------|-------------------------------------|
|     | PCBA0         | 12  | 0         |                                     |
|     | PCBA1         | 14  | 0         |                                     |
|     | PCBA2         | 16  | 0         |                                     |
|     | РСВАЗ         | 18  | 0         | Address 0-6                         |
|     | PCBA4         | 20  | 0         |                                     |
|     | PCBA5         | 22  | 0         |                                     |
|     | РСВА6         | 24  | 0         |                                     |
| 23  | +3.3V         |     | <i>P0</i> | +3.3 V                              |
| 25  | /CARDBON      |     | 0         | 5 V Power Control                   |
|     | CARDBVCC      | 26  | PI        | External Switched CardB Power Input |
| 27  | CARDBIRQ      |     | Ι         | Interrupt Signal                    |
| 29  | /CARDBMWR     |     | 0         | Memory Write                        |
| 31  | /CARDBIOWR    |     | 0         | IO Write                            |
| 33  | /CARDBIORD    |     | 0         | IO Read                             |
|     | PCBA7         | 28  | 0         |                                     |
|     | PCBA8         | 30  | 0         | Address 7-10                        |
|     | РСВА9         | 32  | 0         | Adaress 7-10                        |
|     | PCBA10        | 36  | 0         |                                     |
|     | /CARDBMRD     | 34  | 0         | Memory Read                         |
| 35  | /CARDB_VS1    |     | Ι         | Voltage Sense 1 Input               |
| 37  | /CARDBCE2     |     | 0         | Low Byte Chip Select                |
|     | /CARDBCE1     | 38  | 0         | High Byte Chip Select               |
| 39  | PCBD15        |     | IO        |                                     |
| 41  | PCBD14        |     | IO        |                                     |
| 43  | PCBD13        |     | IO        | Data 11-15                          |
| 45  | PCBD12        |     | IO        |                                     |
| 47  | PCBD11        |     | IO        |                                     |
|     | PCBD7         | 40  | IO        |                                     |
|     | PCBD6         | 42  | IO        |                                     |
|     | PCBD5         | 44  | IO        | Data 3-7                            |
|     | PCBD4         | 46  | IO        |                                     |
|     | PCBD3         | 48  | IO        |                                     |
| 49  | /CARDBDET1    |     | Ι         | Card Detect 1                       |
|     | /CARDBON_3P3V | 50  | 0         | 3.3 V Power Control                 |

## 3.4.5 J7: Ethernet

Board Connector: RJ-45 with integrated magnetics and LEDs

Location on board: A7

| Pin | Name  | Туре | Description |
|-----|-------|------|-------------|
| 1   | ETHP1 | 0    | Transmit +  |
| 2   | ETHP2 | 0    | Transmit -  |
| 3   | ETHP3 | Ι    | Receive +   |
| 4   | n/c   |      |             |
| 5   | n/c   |      |             |
| 6   | ETHP6 | Ι    | Receive -   |
| 7   | n/c   |      |             |
| 8   | n/c   |      |             |

## 3.4.6 J8: I/O, Analog Inputs, USB Function Port

Board Connector: 2x15 header, 2 mm spacing, Samtec STMM-115-02-T-D

Recommended Mating Cable: Samtec TCSD Series Recommended Board-to-Board Connector: ESQT series (e.g. ESQT-115-02-F-D-500)

Location on board: A1-B1

| Pin | Name        | Pin | Туре | Description                     |                                       |  |
|-----|-------------|-----|------|---------------------------------|---------------------------------------|--|
| 1   | GC_GPIO0    |     | IO   |                                 |                                       |  |
| 3   | GC_GPI01    |     | IO   |                                 |                                       |  |
| 5   | GC_GPIO2    |     | IO   |                                 |                                       |  |
| 7   | GC_GPIO3    |     | IO   |                                 |                                       |  |
| 9   | GC_GPIO4    |     | IO   | Gra                             | phics controller digital I/Os (6.2.4) |  |
|     | GC_GPIO9    | 2   | IO   | <i>674</i>                      | mes comfoner argua 1/0s (0.2.4)       |  |
|     | GC_GPIO8    | 4   | IO   |                                 |                                       |  |
|     | GC_GPI07    | 6   | IO   |                                 |                                       |  |
|     | GC_GPIO6    | 8   | IO   |                                 |                                       |  |
|     | GC_GPIO6    | 10  | IO   |                                 |                                       |  |
| 11  | ANINO       |     | AI   |                                 | Analog input (4.6.2)                  |  |
| 13  | ANIN1       |     | AI   | PA5                             |                                       |  |
| 15  | ANIN2       |     | AI   | PA6                             | Analog inputs (4.6.2)                 |  |
| 17  | ANIN3       |     | AI   | PA7                             |                                       |  |
|     | I2C_SCL     | 12  | IO   | PC6                             | $I^{2}C Bus (4.5.5)$                  |  |
|     | I2C_SDA     | 14  | IO   | <i>PC</i> 7                     | (or ADSmartIO, 4.3.6)                 |  |
|     | GC_GPI010   | 16  | IO   |                                 | Graphics controller GPIO 10           |  |
|     | CPLDI00     | 18  | ΙΟ   |                                 |                                       |  |
|     | CPLDI01     | 20  | IO   |                                 | CPLD I/Os                             |  |
|     | CPLDIO2     | 22  | IO   |                                 |                                       |  |
|     | /EXT_IRQ    | 24  | Ι    |                                 | External interrupt                    |  |
| 19  | SPDIF/SDOUT |     | 0    |                                 |                                       |  |
| 21  | EAPD/SCLK   |     | 0    |                                 | Secondary codec signals               |  |
| 23  | GPIO1/SDOUT |     | ΙΟ   |                                 | Secondary codec signals               |  |
| 25  | GPIO0/LRCLK |     | ΙΟ   |                                 |                                       |  |
|     | USB_VCC     | 26  | PI   | USB function port, data (4.5.2) |                                       |  |
| 27  | USB_GND     |     | Р    |                                 |                                       |  |
|     | USB_UDC-    | 28  | IO   |                                 |                                       |  |
|     | USB_UDC+    | 30  | IO   |                                 |                                       |  |
| 29  | GND         |     | Р    |                                 | ground                                |  |

## 3.4.7 J9: PS/2 Keyboard, VGA Output, Ethernet, System Reset

Board Connector: 2x15 header, 2 mm spacing, Samtec STMM-115-02-T-D

Recommended Mating Cable: Samtec TCSD Series Recommended Board-to-Board Connector: ESQT series (e.g. ESQT-115-02-F-D-500)

Location on board: A2-B2

| Pin | Name              | Pin | Туре | Description                                |
|-----|-------------------|-----|------|--------------------------------------------|
| 1   | VCC               |     | PO   | 5 V                                        |
|     | VDDX              | 2   | PO   | 3.3 V                                      |
| 3   | VGA_VSYNC         |     | 0    |                                            |
|     | VGA_HSYNC         | 4   | 0    |                                            |
| 5   | GND               |     | P    |                                            |
|     | CRT_VCC           | 6   | PO   |                                            |
| 7   | GND               |     | P    | Analog Display Signals                     |
| 9   | GND               |     | P    | (4.8.4)                                    |
| 11  | GND               |     | P    |                                            |
|     | VGA_BLUE          | 8   | 0    |                                            |
|     | VGA_GREEN         | 10  | 0    |                                            |
|     | VGA_RED           | 12  | 0    |                                            |
| 13  | PS2_VCC           |     | PO   | PS/2 keyboard power (5 V, fused)           |
|     | GND               | 14  | P    | ground                                     |
| 15  | /RQONOFF          |     | OCI  | "Request On/Off" Switch Input              |
|     | /RESET_<br>BUTTON | 16  | OCI  | System reset                               |
| 17  | ETH_LED1A         |     |      | Entownal Ethoms at LED1 (an odd, og thodo) |
|     | ETH_LED1K         | 18  |      | External Ethernet LED1 (anode, cathode)    |
| 19  | ETH_TD+           |     | 0    |                                            |
|     | ETH_RD+           | 20  | Ι    | E the ament (1, 5, 2)                      |
| 21  | ETH_TD-           |     | 0    | Ethernet (4.5.3)                           |
|     | ETH_RD-           | 22  | Ι    |                                            |
| 23  | ETH_LED2A         |     |      | External Ethernet LED2 (anode, cathode)    |
|     | ETH_LED2K         | 24  |      | External Ellernet LED2 (anode, calhode)    |
| 25  | SIGPS2            |     | IO   | External DS/2 keyboard inputs              |
|     | CLKPS2            | 26  | IO   | External PS/2 keyboard inputs              |
| 27  | n/c               |     |      |                                            |
|     | n/c               | 28  | ]    |                                            |
| 29  | RESET_OUT         |     | 0    | System reset output                        |
|     | n/c               | 30  |      |                                            |

## 3.4.8 J10: PCMCIA

Board connector: AMP 535655-2 (ejector hardware is a factory option)

Location on board: A3-A5

The 68-pin PCMCIA socket conforms to the PCMCIA standard, revision 2.1, for 5 V-tolerant Type II cards. The socket can also run at 3.3 V. The socket is normally de-energized; the operating system is responsible for turning on the socket when a card is inserted and turning it off when the card is removed.

Vpp (pins 18 and 52), which is 12 V in older PCMCIA implementations, is left unconnected in this implementation. See section 6.2.15 for electrical specifications.

## 3.4.9 J11: LCD Display (34-pin)

Board Connector: 2x17 header, 2mm spacing, STMM-117-02-T-D

Recommended Mating Cable: Samtec TCSD Series Recommended Board-to-Board Connector: ESQT series (e.g. ESQT-117-02-F-D-500)

Location on board: A6-B6

The following table describes the signals on the LCD interface connector. Signal names shown are for TFT active matrix color LCDs at 16 bpp (bit-per-pixel). For other color depths and LCD technologies, consult the table in section 4.8.3. Signals from the XScale are buffered and RFI filtered before reaching J1. See section 4.8 for further details about displays.

| D:  | PXA255      | Color Acti      | ve TFT Display at 16bpp                                          |
|-----|-------------|-----------------|------------------------------------------------------------------|
| Pin | Signal Name | ADS Signal Name | Description                                                      |
| 1   |             | PNL_VEE         | $V_{EE}$ (contrast); see JP9                                     |
| 2   |             | GND             | ground                                                           |
| 3   | L_PCLK      | PNL_PIXCLK      | Pixel Clock                                                      |
| 4   | L_LCLK      | PNL_HSYNC       | Horizontal Sync.                                                 |
| 5   | L_FCLK      | PNL_VSYNC       | Vertical Sync.                                                   |
| 6   |             | GND             | ground                                                           |
| 7   | L_DD15      | PNL_RED0        |                                                                  |
| 8   | L_DD11      | PNL_RED1        |                                                                  |
| 9   | L_DD12      | PNL_RED2        | Red data                                                         |
| 10  | L_DD13      | PNL_RED3        | Keu uutu                                                         |
| 11  | L_DD14      | PNL_RED4        |                                                                  |
| 12  | L_DD15      | PNL_RED5        |                                                                  |
| 13  |             | GND             | ground                                                           |
| 14  | L_DD5       | PNL_GREEN0      |                                                                  |
| 15  | L_DD6       | PNL_GREEN1      |                                                                  |
| 16  | L_DD7       | PNL_GREEN2      | Green data                                                       |
| 17  | L_DD8       | PNL_GREEN3      | Green uulu                                                       |
| 18  | L_DD9       | PNL_GREEN4      |                                                                  |
| 19  | L_DD10      | PNL_GREEN5      |                                                                  |
| 20  |             | GND             | ground                                                           |
| 21  | L_DD4       | PNL_BLUE0       |                                                                  |
| 22  | L_DD0       | PNL_BLUE1       |                                                                  |
| 23  | L_DD1       | PNL_BLUE2       | Blue data                                                        |
| 24  | L_DD2       | PNL_BLUE3       | Dine unit                                                        |
| 25  | L_DD3       | PNL_BLUE4       |                                                                  |
| 26  | L_DD4       | PNL_BLUE5       |                                                                  |
| 27  |             | GND             | ground                                                           |
| 28  | L_BIAS      | PNL_LBIAS       | Data enable                                                      |
| 29  |             | PNL_PWR         | <i>Vcc</i> (5 <i>V</i> ) <i>or</i> 3.3 <i>V</i> ( <i>JP3</i> )   |
| 30  |             |                 |                                                                  |
| 31  |             | PNL_RL          | Horizontal Mode Select<br>(set by JP37)                          |
| 32  |             | PNL_UD          | Vertical Mode Select<br>(set by JP36)                            |
| 33  | (CPLD)      | PNL_ENA         | Panel enable signal                                              |
| 34  |             | VCON            | low-voltage adjust for contrast control of some displays (6.2.4) |

## 3.4.10 J12: LCD Signals, LVDS

Board Connector: 2x10 header, 2 mm spacing, Molex 87331-2020.

Recommended mating connector: [tbd]

Location on board: A7-B7

J12 supplies the LCD signals in LVDS format. The LCD signals on each differential pair are listed in the table below (data is clocked out MSB first but is listed LSB first below). Additional details about LVDS are listed in section 4.8.3.

| Pin | Name       | Туре | Description                        |
|-----|------------|------|------------------------------------|
| 1   | PNL_PWR    | PO   | Display power                      |
| 2   |            | 10   | Display power                      |
| 3   | GND        | Р    | ground                             |
| 4   | UND        | 1    | ground                             |
| 5   | RXIN0-     | 0    | LVDS data 0                        |
| 6   | RXIN0+     | 0    | (R4, R0, R1, R2, R3, R4,G0)        |
| 7   | GND        | Р    | ground                             |
| 8   | RXIN1-     | 0    | LVDS data 1                        |
| 9   | RXIN1+     | 0    | (G1, G2, G3, G4, G5 B4, B0)        |
| 10  | GND        | Р    | ground                             |
| 11  | RXIN2-     | 0    | LVDS data 2                        |
| 12  | RXIN2+     | 0    | (B1, B2, B3, B4, HSync, VSync, DE) |
| 13  | GND        | Р    | ground                             |
| 14  | CKIN-      | 0    | LVDS clock (PClk)                  |
| 15  | CKIN+      | 0    | LVDS CIOCK (I CIK)                 |
| 16  | GND        | Р    | ground                             |
| 17  | n/c        | -    | unused                             |
| 18  | <i>n/C</i> | -    | ипизеа                             |
| 19  | GND        | Р    | ground                             |
| 20  | GND        | 1    | grouna                             |

## 3.4.11 J13: Serial 3

Board Connector: 2x5 header, 2mm spacing, Samtec STMM-105-01-T-D

Recommended Mating Cable: Samtec TCSD Series Recommended Board-to-Board Connector: ESQT series (e.g. ESQT-105-02-F-D-500) [tbd]

Location on board: B7-C7

| Pin | Name     | Туре | Description                             |
|-----|----------|------|-----------------------------------------|
| 1   | DCD3     | Ι    | Data Carrier Detect                     |
| 2   | DSR3     | Ι    | Data Set Ready                          |
| 3   | RXD3     | Ι    | Receive data                            |
| 4   | RTS3     | 0    | Ready To Send (or RTR Ready to Receive) |
| 5   | TXD3     | 0    | Transmit data                           |
| 6   | CTS3     | Ι    | Clear To Send                           |
| 7   | DTR3     | 0    | Data Terminal Ready                     |
| 8   | RIB3     | Ι    | Ring Indicator                          |
| 9   | GND_COM3 | Р    | Serial 3 ground                         |
| 10  | n/c      | -    |                                         |

## 3.4.12 J14: ADSmartIO, Serial 1 and 2, EIA-422/485, I/O

Board Connector: 2x20 header, 2 mm spacing, Samtec STMM-120-02-T-D

Recommended Mating Cable: Samtec TCSD Series Recommended Board-to-Board Connector: ESQT series (e.g. ESQT-120-02-F-D-500)

Location on board: B1-D1

| Pin | Name     | Pin | Туре | Description |                                   |  |
|-----|----------|-----|------|-------------|-----------------------------------|--|
| 1   | ROW0     |     | IO   | PC0         |                                   |  |
| 3   | ROW1     |     | IO   | PC1         |                                   |  |
| 5   | ROW2     |     | IO   | PC2         |                                   |  |
| 7   | ROW3     |     | IO   | РС3         | ADSmartIO                         |  |
| 9   | ROW4     |     | IO   | PC4         | Keypad rows or digital I/O        |  |
| 11  | ROW5     |     | IO   | PD5         |                                   |  |
| 13  | ROW6     |     | IO   | PD6         |                                   |  |
| 15  | ROW7     |     | IO   | PD7         |                                   |  |
|     | RXD2     | 2   | Ι    |             |                                   |  |
|     | TXD2     | 4   | 0    |             |                                   |  |
|     | CTS2     | 6   | Ι    |             | Serial 2, EIA-232                 |  |
|     | RTS2     | 8   | 0    |             |                                   |  |
|     | GNDCOM2  | 10  | Р    |             |                                   |  |
|     | RXD1     | 12  | Ι    |             |                                   |  |
|     | TXD1     | 14  | 0    |             | Serial 1                          |  |
|     | CTS1     | 16  | Ι    | FIA 2       | 32 with 3.3 V CMOS factory option |  |
|     | RTS1     | 18  | 0    | LIA-2       |                                   |  |
|     | GNDCOM1  | 20  | Р    |             |                                   |  |
| 17  | COLO     |     | IO   | PAO         |                                   |  |
| 19  | COL1     |     | IO   | PA1         |                                   |  |
| 21  | COL2     |     | IO   | PA2         |                                   |  |
| 23  | COL3     |     | IO   | PA3         | ADSmartIO                         |  |
| 25  | COL4     |     | IO   | PA4         | Keypad columns or digital I/Os    |  |
| 27  | COL5     |     | IO   | PD1         |                                   |  |
| 29  | COL6     |     | IO   | PB1         |                                   |  |
| 31  | COL7     |     | IO   | PD4         |                                   |  |
|     | RX422+   | 22  | Ι    |             |                                   |  |
|     | RX422-   | 24  | Ι    |             |                                   |  |
|     | TX422+   | 26  | 0    |             | Serial 1, EIA-422/485             |  |
|     | TX422-   | 28  | 0    |             |                                   |  |
|     | GNDRS422 | 30  | Р    |             |                                   |  |
|     | CPLDIO3  | 32  | IO   |             |                                   |  |
|     | CPLDIO4  | 34  | IO   |             | CPLD GPIOs (4.6.1)                |  |
|     | CPLDIO5  | 36  | IO   |             |                                   |  |
|     | CPLDIO6  | 38  | IO   |             |                                   |  |
| 33  | VREF     |     | AO   | AL          | DSmartIO A/D reference voltage    |  |
| 35  | VCC      |     | PO   |             | 5 V                               |  |
| 37  | VDDX     |     | PO   |             | 3.3 V                             |  |
| 39  | GND      |     | P    |             | ground                            |  |
|     | 0.12     | 40  | Р    |             | 0.0000                            |  |

## 3.4.13 J15: Audio, Touch Panel, Backlight, CAN, Serial 3, IrDA, USB Host

Board Connector: 2x20 header, 2 mm spacing, Samtec STMM-120-02-T-D

Recommended Mating Cable: Samtec TCSD Series Recommended Board-to-Board Connector: ESQT series (e.g. ESQT-120-02-F-D-500)

Location on board: B2-D2

| Pin | Name                | Pin | Туре | Description                  |              |                         |
|-----|---------------------|-----|------|------------------------------|--------------|-------------------------|
| 1   | CANHIGH             |     | IO   | CAN bus (4.5.4)              |              |                         |
|     | CANLOW              | 2   | IO   |                              | CAI          | v bus (4.3.4)           |
| 3   | USB_M_VCC           |     | PO   |                              |              |                         |
|     | USB_M_UDC-          | 4   | IO   | USB Host                     |              |                         |
| 5   | $USB_M_UDC+$        |     | IO   |                              |              |                         |
|     | USB_M_GND           | 6   | Р    |                              |              |                         |
| 7   | TSPX                |     | AIO  | right                        | UL           |                         |
|     | TSPY                | 8   | AIO  | bottom                       | UR           |                         |
| 9   | TSMX                |     | AIO  | left                         | LL           | Touch screen            |
|     | TSMY                | 10  | AIO  | top                          | LR           |                         |
|     | WIPER               | 12  | AI   | n/a                          | WIPER        |                         |
| 11  | GND                 |     | Р    |                              |              | ground                  |
| 13  | RIB3                |     | Ι    |                              |              |                         |
|     | DCD3                | 14  | Ι    |                              |              |                         |
| 15  | TXD3                |     | 0    |                              |              |                         |
|     | RXD3                | 16  | Ι    |                              |              | Serial 3                |
| 17  | CTS3                |     | Ι    | Serial 3                     |              |                         |
|     | RTS3                | 18  | 0    |                              |              |                         |
| 19  | DSR3                |     | Ι    |                              |              |                         |
|     | DTR                 | 20  | 0    |                              |              |                         |
| 21  | BacklightOn         |     | 0    |                              | Backlig      | ht on/off (4.8.3)       |
|     | <b>BacklightPWM</b> | 22  | AO   | Ba                           |              | tensity control (4.8.3) |
| 23  | +12V                |     | PO   |                              | 12 V po      | wer for backlight       |
|     | $\pm 12V$           | 24  | PO   |                              | fro          | <i>m J2 (3.4.2)</i>     |
| 25  | SPKR+               |     | AO   |                              | Starao sna   | aker, right channel     |
|     | SPKR-               | 26  | AO   |                              | Siereo spe   | aker, rigni channei     |
| 27  | SPKL+               |     | AO   |                              | Starao sn    | eaker, left channel     |
|     | SPKL-               | 28  | AO   |                              |              |                         |
| 29  | GNDCOM3             |     | Р    |                              | Ser          | ial 3 ground            |
|     | VCCTXIRDA           | 30  | PO   |                              |              |                         |
| 31  | RXIRDA              |     | Ι    |                              |              |                         |
|     | TXIRDA              | 32  | 0    |                              | IrDA (4.5.1) |                         |
| 33  | VCCRXIRDA           |     | PO   |                              |              |                         |
|     | /IRDAON             | 34  | 0    |                              |              |                         |
| 35  | AGND                |     | AP   | Analog ground                |              |                         |
|     |                     | 36  | AP   |                              |              | 105 510mm               |
| 37  | MIC1_IN             |     | AI   | left Stereo microphone input |              | reo microphone input    |
|     | MIC2_IN             | 38  | AI   |                              |              | тео писторноне три      |
| 39  | AGND                |     | AP   |                              |              |                         |
|     | nonD                | 40  | AP   | Analog ground                |              |                         |

## 3.4.14 J16: Manufacturing Test Connector

Board Connector: 2x5 header, unshrouded, 2mm spacing, Samtec TMM-105-01-T-D

Recommended Mating Cable: Samtec TCSD Series Recommended Board-to-Board Connector: ESQT series (e.g. ESQT-105-02-F-D-500) [tbd]

Location on board: C7

This header is used during manufacturing to program the boot flash, onboard logic and ADSmartIO firmware. It includes both JTAG and SPI signals and is intended for factory use.

| Pin | Name | Pin | Туре | Description           |
|-----|------|-----|------|-----------------------|
| 1   | VCC  |     | PO   | 5 V                   |
|     | MOSI | 2   | Ι    |                       |
|     | PRG  | 4   | Ι    | AVR SPI for in-system |
|     | SCK  | 6   | Ι    | programming           |
|     | MISO | 8   | 0    |                       |
| 3   | TCLK |     | Ι    |                       |
| 5   | TDO  |     | 0    | ITAC                  |
| 7   | TDI  |     | Ι    | JTAG                  |
| 9   | TMS  |     | Ι    |                       |
|     | GND  | 10  | P    | ground                |

## 3.4.15 J17: CAN Bus

Board Connector: 1x2 header, 0.1 inch spacing, Molex 22-23-2021

Recommended Mating Connector: [tbd]

Location on board: D7

| Pin | Name    | Туре | Description           |
|-----|---------|------|-----------------------|
| 1   | CANHIGH | IO   | CAN bus (4.5.4)       |
| 2   | CANLOW  | IO   | $CAN \ bus \ (4.5.4)$ |

#### 3.4.16 J18: Touch Panel

Board Connector: 1x4 or 1x5 header, 0.100 inch spacing, Molex 22-23-2051(5-pin)

Recommended Mating Connector: [tbd]

Location on board: D7

| Pin | Name  | Туре | Description |        |              |  |  |
|-----|-------|------|-------------|--------|--------------|--|--|
|     |       |      | 4-wire      | 5-wire |              |  |  |
| 1   | TSMX  | AIO  | left        | LL     |              |  |  |
| 2   | TSPX  | AIO  | right       | UL     |              |  |  |
| 3   | TSPY  | AIO  | bottom      | UR     | Touch screen |  |  |
| 4   | TSMY  | AIO  | top         | LR     |              |  |  |
| 5   | WIPER | AI   | n/a         | WIPER  |              |  |  |

## 3.4.17 J19: LCD Display (Hirose)

Board Connector: Hirose DF9B-31P-1V

Recommended Mating Cable: [tbd]

Location on board: B6, underside of board

This header can be used to directly connect to some Sharp active TFT displays and products that are compatible with them. The signals on this connector are a subset of the signals on J11. See section 3.4.9 for more detailed descriptions of the signals.

| Pin | Name       | Pin | Туре | Description     |  |
|-----|------------|-----|------|-----------------|--|
| 1   | GND        |     | 0    | ground          |  |
|     | PNL_PIXCLK | 2   | 0    | Pixel clock     |  |
| 3   | PNL_HSYNC  |     | 0    | Horizontal sync |  |
|     | PNL_VSYNC  | 4   | 0    | Vertical sync   |  |
| 5   | GND        |     | 0    | ground          |  |
|     | PNL_RED0   | 6   | 0    |                 |  |
| 7   | PNL_RED1   |     | 0    |                 |  |
|     | PNL_RED2   | 8   | 0    | Red data        |  |
| 9   | PNL_RED3   |     | 0    | Kea aala        |  |
|     | PNL_RED4   | 10  | 0    |                 |  |
| 11  | PNL_RED5   |     | 0    |                 |  |
|     | GND        | 12  | 0    | ground          |  |
| 13  | PNL_GREEN0 |     | 0    |                 |  |
|     | PNL_GREEN1 | 14  | 0    |                 |  |
| 15  | PNL_GREEN2 |     | 0    | Green data      |  |
|     | PNL_GREEN3 | 16  | 0    | Green aaaa      |  |
| 17  | PNL_GREEN4 |     | 0    |                 |  |
|     | PNL_GREEN5 | 18  | 0    |                 |  |
| 19  | GND        |     | 0    | ground          |  |
|     | PNL_BLUE0  | 20  | 0    |                 |  |
| 21  | PNL_BLUE1  |     | 0    |                 |  |
|     | PNL_BLUE2  | 22  | 0    | Blue data       |  |
| 23  | PNL_BLUE3  |     | 0    | <i>Dine</i> απη |  |
|     | PNL_BLUE4  | 24  | 0    |                 |  |
| 25  | PNL_BLUE5  |     | 0    |                 |  |
|     | GND        | 26  | 0    | ground          |  |
| 27  | PNL_LBIAS  |     | 0    | Data enable     |  |
|     | GND        | 28  | 0    | ground          |  |
| 29  | PNL_PWR    |     | 0    | Panel power     |  |
|     | PNL_RL     | 30  | 0    | Right/left flip |  |
| 31  | PNL_UD     |     | 0    | Up/down flip    |  |

## 3.4.18 J40: Expanded I/O

Board Connector: 2x25 header, 2 mm spacing, Samtec STMM-125-02-T-D

Recommended Mating Cable: Samtec TCSD Series Recommended Board-to-Board Connector: ESQT series (e.g. ESQT-125-02-F-D-500)

Location on board: B6-D6

| Pin | Name        | Pin | Туре | Description                                    |                                     |  |
|-----|-------------|-----|------|------------------------------------------------|-------------------------------------|--|
| 1   | DTRC        |     |      |                                                | •                                   |  |
| 3   | RIC         |     |      | Serial C (4.5.1)<br>(additional signals below) |                                     |  |
| 5   | DCDC        |     |      |                                                |                                     |  |
| 7   | DSRC        |     |      |                                                |                                     |  |
|     | DTRD        | 2   |      |                                                |                                     |  |
|     | RID         | 4   |      | Serial D (4.5.1)<br>(additional signals below) |                                     |  |
|     | DCDD        | 6   |      |                                                |                                     |  |
|     | DSRD        | 8   |      |                                                |                                     |  |
| 9   | MMCDAT      |     | IO   | Data                                           |                                     |  |
|     | MMCCS1      | 10  | 0    | Chip select 1                                  |                                     |  |
| 11  | MMCCLK      |     | 0    | Clock                                          | Multimedia Card (MMC)<br>Controller |  |
|     | MMCCS0      | 12  | 0    | Chip select 0                                  | (4.5.6)                             |  |
| 13  | MMCCD       |     | Ι    | Card Detect                                    | (4.5.0)                             |  |
| 15  | MCCCMD      |     | 0    | Command                                        |                                     |  |
|     | BATPOS      | 14  | PI   |                                                | ie clock backup battery             |  |
|     | HP_IN       | 16  | Ι    | Нес                                            | adphone connected                   |  |
| 17  | $OTG_M_VCC$ |     |      |                                                |                                     |  |
|     | OTG_ID      | 18  |      | USB On-The-Go (4.5.2)                          |                                     |  |
| 19  | OTG-        |     |      |                                                |                                     |  |
|     | OTG+        | 20  |      |                                                |                                     |  |
| 21  | GND         |     |      | ground                                         |                                     |  |
|     |             | 22  |      |                                                |                                     |  |
| 23  | RXDA        |     |      |                                                |                                     |  |
| 25  | TXDA        |     |      | Serial A (4.5.1)                               |                                     |  |
| 27  | CTSA        |     |      |                                                |                                     |  |
| 29  | RTSA        |     |      |                                                |                                     |  |
| 31  | DTRA        |     |      |                                                |                                     |  |
| 33  | DCDA        |     |      |                                                |                                     |  |
| 35  | DSRA        |     |      |                                                |                                     |  |
| 37  | RIA         |     |      |                                                |                                     |  |
| 39  | GNDCOMA     |     |      |                                                |                                     |  |
|     | RXDB        | 24  |      |                                                |                                     |  |
|     | TXDB        | 26  |      |                                                |                                     |  |
|     | CTSB        | 28  |      |                                                |                                     |  |
|     | RTSB        | 30  |      |                                                |                                     |  |
|     | DTRB        | 32  |      |                                                | Serial B (4.5.1)                    |  |
|     | DCDB        | 34  |      |                                                |                                     |  |
|     | DSRB        | 36  |      |                                                |                                     |  |
|     | RIB         | 38  |      |                                                |                                     |  |
|     | GNDCOMB     | 40  |      |                                                |                                     |  |

| Pin | Name    | Pin | Туре | Description                                    |
|-----|---------|-----|------|------------------------------------------------|
| 41  | RXDC    |     |      |                                                |
| 43  | TXDC    |     |      | Samial $C(4,5,1)$                              |
| 45  | CTSC    |     |      | Serial C (4.5.1)<br>(additional signals above) |
| 47  | RTSC    |     |      | (additional signals above)                     |
| 49  | GNDCOMC |     |      |                                                |
|     | RXDD    | 42  |      |                                                |
|     | TXDD    | 44  |      | Social $D(451)$                                |
|     | CTSD    | 46  |      | Serial D (4.5.1)<br>(additional signals above) |
|     | RTSD    | 48  |      | (uuunonui signuis uoove)                       |
|     | GNDCOMD | 50  |      |                                                |

(This page intentionally blank)

# 4 Feature Reference

This chapter provides details about the architecture and many features of the AGX, and how they can fit together to create a system that meets your application needs.

### 4.1 System Architecture

#### 4.1.1 Boot Code

The AGX uses the first block of onboard flash to store the boot code. At the factory, boot code is loaded using the JTAG interface (J6, section 3.4.10). Most ADS AGX boot loaders are field-upgradeable using a flash card on either the CompactFlash or PCMCIA port.

#### 4.1.2 Synchronous DRAM

One bank of synchronous DRAM (SDRAM) can be populated for a system total of 16, 32, 64 or 128 MiB of RAM<sup>8</sup>. The data bus width is 32 bit.

The memory clock speed is one half the CPU core clock speed. Typical memory bus operation is at 99.5 MHz.

The self-refreshed RAM consumes most of the system sleep current. Sleep current increases roughly in direct proportion to the amount of RAM installed.

#### 4.1.3 Non-Volatile Memory

There are several ways to store data on the AGX that will survive a power failure. Some devices can only be accessed through operating system drivers, and not all are available for application data storage.

#### Flash Memory

Flash memory is the primary site for non-volatile data storage. The AGX includes a bank of flash memory for non-volatile data storage. The board supports 8, 16 or 32 MiB of installed flash. The data bus width is 32 bit.

ADS systems store the operating system, applications and system configuration settings in the onboard flash. Most operating systems configure a portion of the flash as a flash disk, which acts like a hard disk drive.

### ADSmartIO EEPROM

The ADSmartIO controller includes 256 bytes or more of EEPROM storage. ADS reserves a portion of this memory for future use. Drivers may not be available for all operating systems.

### CompactFlash and PCMCIA/ATA Cards

CF and ATA cards provide removable storage in a wide variety of capacities. These cards can be cost-effective means to expand system storage capacity for applications that provide access to the PCMCIA and CF slots.

<sup>&</sup>lt;sup>8</sup> 128 MiB SDRAM was not yet commercially available as of April 2003.

### RTC NVRAM

The real-time clock chip includes 56 bytes of non-volatile RAM. The RAM is maintained as long as main or backup power is provided to the chip. Drivers are not currently available to access this feature. Contact ADS Sales if your application requires this feature.

### 4.1.4 Interrupts

The AGX includes several sources for external interrupts. The following table summarizes the external interrupt sources and the devices to which they are connected.

| Interrupt Signal          | Pin    | IRQ Handler     |
|---------------------------|--------|-----------------|
| /RqOnOff                  | J9.15  | PXA255, GP 0    |
| /EXT_IRQ                  | J8.24  | Controller CPLD |
| CARDBIRQ                  | J4.37  | PCMCIA CPLD     |
| XScale GPIOs <sup>9</sup> | varied | XScale CPU      |

Your operating system may not include drivers for all interrupt sources.

### 4.1.5 CompactFlash / Expansion Bus

The AGX makes its CompactFlash bus signals available on J4 (3.4.4). These signals can be used to add a CompactFlash socket to a daughter board or to expand the capabilities of the AGX as a digital expansion bus. The voltage of the bus signals is fixed at 3.3 V. Electrical specifications are listed in section 6.2.15.

ADS document number 640111-8000 (available on the ADS Support Forums) is the schematic for the Bitsy Personality Board design, which illustrates how to use the CF bus either as a CompactFlash socket or for an Ethernet controller. Additional documents are available on the ADS support web site (section 2.4) that illustrate how to use the CF bus.

### 4.1.6 PXA255 GPIO Cross-Reference

The following table describes how the AGX utilizes the XScale GPIO lines (GPn). They are offered for reference purposes only. Most operating systems make this information transparent to developers.

| GP | Signal Name | Туре | Function (connector, section)                          |
|----|-------------|------|--------------------------------------------------------|
| 0  | WAKE_UP     | Ι    | Wakeup from ADSmartIO<br>and debounced RqOnOff (6.2.1) |
| 1  | IRQ_CPLD    | Ι    | CPLD interrupt                                         |
| 2  | CTS2        | 0    | Serial 2 CTS (4.5.1)                                   |
| 3  | USB_DET     | Ι    | USB function port, detect connection                   |
| 4  | IRQ_TS      | Ι    | Touch panel interrupt                                  |
| 5  | USB_RECONN  | 0    | USB function port, disconnect/reconnect                |
| 6  | MMCCLK      | 0    | MMC clock (J7, 4.5.6)                                  |
| 7  | CARDAVS1    | Ι    | PCMCIA Voltage Sense 1                                 |
| 8  | MMCCS0      | 0    | MMC chip select 0 (J7, 4.5.6)                          |
| 9  | MMCCS1      | 0    | MMC chip select 1 (J7, 4.5.6)                          |
| 10 | CARDAVS2    | Ι    | PCMCIA Voltage Sense 2                                 |
| 11 | CARDBVS1    | Ι    | CompactFlash Voltage Sense 1                           |

<sup>9</sup> Important! The PXA255 has restrictive constraints concerning timing of successive interrupts. While you may configure one or more XScale GPIOs as interrupt sources, it's possible to create a condition under which interrupts in rapid succession can cause the processor to lock up.

| GP              | Signal Name      | Туре          | Function (connector, section)           |
|-----------------|------------------|---------------|-----------------------------------------|
| 12              | MMCCD            | O             | MMC card detect (J7, 4.5.6)             |
| 13              | IRQ_USB          | I             | USB interrupt                           |
| 14              | CARDAVS2         | I             | CompactFlash Voltage Sense 2            |
| 15              | /CS1             | 0             | Asynchronous flash chip select          |
| 16              | VEEPWM           | 0             | PWM0 control of Vee voltage             |
| 17              | PXAPWM1          | 0             | PWM1 backlight brightness control       |
| 18              | RDY              | 0             | Variable latency access CPU ready       |
| 19              | LED1             | 0             | variable latency access of 6 ready      |
| 20              | LEDI             | 0             | Onboard LED outputs                     |
| 20              | LED <sup>©</sup> | 0             |                                         |
| 22              | n/c              | 0             | unused                                  |
| 23              | SCLK-C           | 0             | unuscu                                  |
| 23              | SFRM-C           | 0             |                                         |
| 24              | TXD-C            | 0             | SPI to touch panel controller           |
| 25              | RXD-C            |               |                                         |
| 20              | GPIO27           | $\frac{1}{0}$ | Reset ADSmartIO controller              |
| 27              | BITCLK           |               | Nesei ADSmartiO controller              |
| 28              | SDATA_IN         |               |                                         |
| 30              | SDATA_IN         |               | AC97 Codec                              |
| 30              | SYNC             |               |                                         |
| $\frac{31}{32}$ | RTS2             | 0             | Serial 2 RTS (4.5.1)                    |
| $\frac{32}{33}$ | /CS_GC           |               | Graphics controller chip select         |
| <u> </u>        | FF RXD           | 0<br>I        | Graphics controller chip seleci         |
| 34              |                  | I             |                                         |
| 35              | FF_CTS           | I             |                                         |
|                 | FF_DCD           |               | Full fortuned UADT                      |
| 37              | FF_DSR           | I             | Full-featured UART<br>(J13, J15, 4.5.1) |
| 38              | FF_RI            | I             | (J15, J15, 4.5.1)                       |
| 39              | FF_TXD           | 0             |                                         |
| 40              | FF_DTR           | 0             |                                         |
| 41              | FF_RTS           | 0             |                                         |
| 42              | BT_RXD           | I             |                                         |
| 43              | BT_TXD           | 0             | Bluetooth UART (J14, 4.5.1)             |
| 44              | BT_CTS           | I             |                                         |
| 45              | BT_RTS           | 0             |                                         |
| 46              | IR_RXD           | I             | Infrared/Serial 2 (J14, J15, 4.5.1)     |
| 47              | IR_TXD           | 0             | · · · · · · ·                           |
| 48              | /POE             |               |                                         |
| 49              | /PWE             |               |                                         |
| 50              | /PIOR            |               |                                         |
| 51              | /PIOW            |               |                                         |
| 52              | /PCE1            |               | PCMCIA/CF Card interface                |
| 53              | /PCE2            |               | · · · · · · · · · · · · · · · · · ·     |
| 54              | PSKTSEL          |               |                                         |
| 55              | /PREG            |               |                                         |
| 56              | /PWAIT           |               |                                         |
| 57              | /IOIS16          |               |                                         |

| GP | Signal Name | Туре | Function (connector, section) |
|----|-------------|------|-------------------------------|
| 58 | L_DD0       | 0    |                               |
| 59 | L_DD1       | 0    |                               |
| 60 | L_DD2       | 0    |                               |
| 61 | L_DD3       | 0    |                               |
| 62 | L_DD4       | 0    |                               |
| 63 | L_DD5       | 0    |                               |
| 64 | L_DD6       | 0    |                               |
| 65 | L_DD7       | 0    |                               |
| 66 | L_DD8       | 0    |                               |
| 67 | L_DD9       | 0    | LCD display (4.8, J11, J19)   |
| 68 | L_DD10      | 0    | LCD uspuy (4.0, 511, 517)     |
| 69 | L_DD11      | 0    |                               |
| 70 | L_DD12      | 0    |                               |
| 71 | L_DD13      | 0    |                               |
| 72 | L_DD14      | 0    |                               |
| 73 | L_DD15      | 0    |                               |
| 74 | L_FCLK      | 0    |                               |
| 75 | L_LCLK      | 0    |                               |
| 76 | L_PCLK      | 0    |                               |
| 77 | L_BIAS      | 0    |                               |
| 78 | CS2         | 0    | Controller CPLD chip select   |
| 79 | CS3         | 0    | USB chip select               |
| 80 | CS4         | 0    | Ethernet chip select          |

# 4.2 Real-Time Clock (RTC)

The AGX uses the DS1307 real-time clock chip to maintain the system date and time when the system is powered down.

The operating system typically reads the RTC on boot and wakeup, and sets the RTC when the system time or date is changed. The system communicates with the RTC on the  $I^2C$  bus (section 4.5.5).

The RTC is powered by a long-life 3 V battery. As a factory option, the battery can be removed from the AGX and the RTC can be powered via the BATPOS input on J40 pin 14. See section 6.2.2 for electrical specifications.

### 4.3 ADSmartIO

ADSmartIO<sup>TM</sup> is a RISC microcontroller on the AGX that is programmed with ADS firmware. This device provides additional I/O functionality for specialized tasks. Your application software can configure the standard ADSmartIO for a variety of functions, such as digital I/O, PWM, A/D,  $I^2C$ , keypad scan and PS/2 keyboard operation.

#### 4.3.1 Overview

The ADSmartIO controller has four, eight-pin I/O ports named PA, PB, PC and PD. Some of these ports' pins are used internally, while others are available for user applications. See the signal cross-reference in section 4.3.6 for details.

Generally, ADSmartIO ports are referenced by port and pin number (e.g. PA2), but I/O signals may go by several names based on its functionality. See the connector pinouts to cross-reference ADSmartIO signal names.

Electrical specifications for the ADSmartIO are listed in section 6.2.4. The *ADSmartIO Programmer's Reference* (ADS document 110110-4004) gives information about how to use the ADSmartIO features.

### 4.3.2 ADSmartIO Features

The following are some of the functions that the ADSmartIO can perform. The functions actually implemented depend on the firmware loaded on your system:

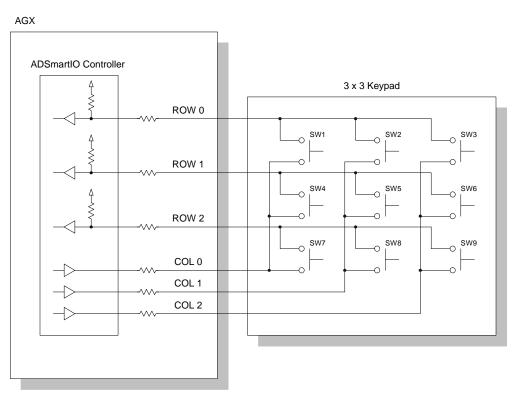
- General purpose digital I/O and A/D
- Keypad scan (section 4.3.5)
- PS/2 keyboard input
- Backlight on/off and brightness control (section 4.8.3)
- Contrast control for display (enabled only when pixel clock is running) (section 4.8.3)
- Read/set real-time clock (RTC) (section 4.2)
- Wakeup via RQONOFF signal (section 5.2.3)
- Monitor system power
- Reset CPU

### 4.3.3 Digital I/Os

All available ports on the ADSmartIO controller can be individually configured as inputs or outputs. If you write a "1" to an I/O port when it is configured as an input, it enables a pull-up resistor. Electrical specifications are listed in section 6.2.4.

### 4.3.4 Analog Inputs (A/D)

Each of the Port A I/Os (PA0-PA7) includes an analog-to-digital (A/D) converter. The converters give full-scale readings when the voltage at the pin is equal to voltage reference Vref (e.g. V=Vref•reading/1023). Not all ports are available for external A/D use; see section 4.3.6 for port assignments. The A/D inputs on the AGX go through voltage dividers before reaching the pins. See the electrical specifications listed in section 6.2.6 for details.


#### 4.3.5 Keypad Scan

The ADSmartIO can scan a matrix keypad up to four by five keys in size. Matrix keypads are simpler and cost less than full keyboards and can be easily customized for your application. You can also create a keypad matrix from a collection of normally-open switches.

When configured to scan a keypad, the ADSmartIO configures the ROWn lines as inputs with software pull-ups enabled and configures the COLn lines as outputs set to "1"(high). For the scan, the keypad scanner sets successive COLn outputs to "0"(low), then looks for a "0" on one of the ROWn inputs. The scanner re-reads the pressed key after a delay to debounce the key press.

Unused row and column lines can be used for general purpose I/O or A/D.

The following diagram illustrates how to connect a 3x3 keypad matrix. The pull-ups are the software-activated internal resistors of the ADSmartIO, while the series resistors are part of the AGX.



### 4.3.6 ADSmartIO Signal Cross-Reference

The ADSmartIO microcontroller serves many functions in the AGX. The following table illustrates how the microcontroller ports are utilized for ADSmartIO functionality on the AGX.

Entries in parentheses indicate indirect connections to the listed pin (e.g. through voltage dividers or additional circuits). Signals with conventional protection circuits are considered directly connected. I=input, O=output.

| Port | Pin    | Туре | Function                   |  |  |  |  |
|------|--------|------|----------------------------|--|--|--|--|
| PA0  | J14.17 | IO   |                            |  |  |  |  |
| PA1  | J14.19 | IO   |                            |  |  |  |  |
| PA2  | J14.21 | IO   | Keypad, A/D or digital I/O |  |  |  |  |
| PA3  | J14.23 | IO   |                            |  |  |  |  |
| PA4  | J14.25 | IO   |                            |  |  |  |  |
| PA5  | J8.13  | AI   |                            |  |  |  |  |
| PA6  | J8.15  | AI   | Analog inputs (ANIN1-3)    |  |  |  |  |
| PA7  | J8.17  | AI   |                            |  |  |  |  |
|      |        |      |                            |  |  |  |  |

| Port | Pin    | Туре | Function                       |           |  |  |  |
|------|--------|------|--------------------------------|-----------|--|--|--|
| PB0  | J9.25  | 0    |                                | PS/2 Data |  |  |  |
| PB1  | J14.29 | IO   | Keypad column or digital I/O   |           |  |  |  |
| PB2  | -      | 0    | Wake up CPU                    |           |  |  |  |
| PB3  | -      | 0    | IRQ to CPU                     |           |  |  |  |
| PB4  | -      |      | SFRM                           |           |  |  |  |
| PB5  | -      |      | RX (MOSI) SPI communication    |           |  |  |  |
| PB6  | -      |      | TX (MISO) with controller CPLI |           |  |  |  |
| PB7  | -      |      | CLK                            |           |  |  |  |

|                            | IO | J14.1 | PC0 |
|----------------------------|----|-------|-----|
|                            | IO | J14.3 | PC1 |
| Keypad rows or digital I/O | IO | J14.5 | PC2 |
|                            | IO | J14.7 | PC3 |
|                            | IO | J14.9 | PC4 |
| Pixel clock                | Ι  | -     | PC5 |
| $I^{2}C^{10}$              | IO | J8.12 | PC6 |
| I C                        | IO | J8.14 | PC7 |

| PD0 | -      | 0  | Passive panel enable (PNL_ENA) |
|-----|--------|----|--------------------------------|
| PD1 | J14.27 | IO | Keypad column or digital I/O   |
| PD2 | -      | Ι  | Power enable from system       |
| PD3 | J9.26  | IO | PS/2 Clock                     |
| PD4 | J14.31 | IO | Keypad column or digital I/O   |
| PD5 | J14.11 | IO |                                |
| PD6 | J14.13 | IO | Keypad rows or digital I/Os    |
| PD7 | J14.15 | IO |                                |

#### 4.4 Audio

The AGX includes an AC97 codec for stereo audio input and output. Electrical specifications for the audio system are listed in section 6.2.10.

#### 4.4.1 Microphone Pre-amps

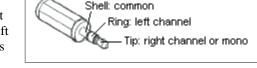
The AGX supports the connection of a stereo electret microphone to the MIC\_R and MIC\_L inputs on J10. The audio signals run through pre-amplifiers that low-pass filter and boost the signal before being passed on to the audio codec.

When connecting external electret microphones to the AGX, use the MIC\_GND analog ground plane for improved signal-to-noise ratio. The AGX includes pull-ups to power electret microphones.

#### 4.4.2 Audio Outputs: Speakers and Headphones

The AGX audio amplifier supports both differential and single-ended output devices. Differential (or "bridge") drive delivers greater output power and is suitable for speakers, which can be wired independently from each other. Single-ended mode is used for devices like headphones, which have a common ground between output channels.

 $<sup>^{10}</sup>$  PC6 and PC7 are used for the I<sup>2</sup>C bus master interface. See section 4.5.5 for details. These pins can be reconfigured as digital I/Os for custom production applications.


The HP\_IN input (J3.32) determines the output mode of the amplifier: When HP\_IN is high, the audio output drive is single-ended, when HP\_IN is low, the output drive is differential. An on-board pull-up normally keeps HP\_IN high.

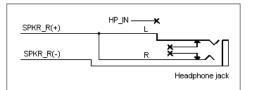
### **Connecting Speakers**

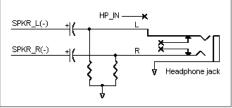
When using the AGX to drive speakers, short the HP\_IN signal to ground. This places the output amplifier in differential mode. Connect speakers to the SPKR\_L and SPKR\_R outputs on J10.

### Connecting Headphones

Standard headphones use a plug wired as shown at right. Three rings on the plug provide right and left channels and a common return. Mono headphones do not include the center ring.




The mating headphone jacks include spring contacts to make an electrical connection with the headphone and to mechanically hold the plug in place. Some jacks include a mechanical switch suitable for use with the HP\_IN signal that is activated when a plug is inserted into the jack.


#### Mono Headphones

You can connect mono headphones directly to the AGX as shown at right. Keep in mind that the resulting impedance of the parallel-connected headphone speakers is half that of a single headphone speaker. See the audio driver specifications in section 6.2.10 for details about the minimum impedance an audio output channel can drive.

#### Stereo Headphones

When wiring for stereo headphones, wire blocking capacitors in series with the AGX SPKR- signals as shown at right. These capacitors block the DC component of the audio signal and complete the





conversion from differential to single-ended output drive. Leave the HP\_IN signal pulled high to enable headphone output.

Select blocking capacitor size based on the lowest frequency your application will need to play out. Larger capacitors give improved bass response (lower frequency cutoff), but are physically larger and cost more. The corner frequency for the low-pass filter created by the capacitor and the headphone speaker is calculated as  $fo=1/(2\pi R_L C)$ . A 330 uF capacitor into a 32 ohm headphone speaker will give a low cutoff frequency of 15 Hz. Use electrolytic capacitors rated for at least 6.3 V.

The pull-down resistors shown in the diagram drain any charge that builds up on the headphone outputs when headphones are not connected. Use 1 k $\Omega$  resistors.

## Using Stereo Headphones and Speakers in the Same System

Some applications use both headphones and speakers. You can wire the headphone jack to automatically switch the amplifier to single-ended mode when a headphone plug is inserted in the jack. This will disable the drive to any speakers that are wired into the system.

Most headphone jacks include mechanical switches that indicate when a headphone plug has been

inserted. The diagram at right shows a circuit that pulls down the HP\_IN signal when a headphone plug is removed.

For this circuit to work reliably in differential mode, the HP\_IN signal must remain below  $V_{HP_IN}$  through the largest output voltage swings of SPKR\_L. Use of 1 k $\Omega$  resistors meets this requirement.

### 4.5 Data Communications

The AGX has several built-in channels for communication with peripheral and peer devices. These include EIA/TIA-232, -422 and -485; J1708; logic-level serial; IrDA; USB host, client USB and On-The-Go ports; Ethernet; CAN bus and I<sup>2</sup>C.

### 4.5.1 Serial Ports

The AGX has seven serial ports: three from the XScale processor and four from a quad UART. The serial ports can be configured as follows:

| Port  | # signals | Headers                | Standard                         | Factory options   |  |  |
|-------|-----------|------------------------|----------------------------------|-------------------|--|--|
| 1     | 5         | J14, JP5-7,<br>JP10-13 | EIA/TIA-232,<br>EIA/TIA-422/485  | J1708, 3.3 V CMOS |  |  |
| 2     | 5         | JP4, J14,<br>J15, U22  | EIA/TIA-232,<br>IrDA, 3.3 V CMOS | header for IrDA   |  |  |
| 3     | 9         | J13, J15               | EIA/TIA-232                      | 3.3 V CMOS        |  |  |
| A & B | 9         | J40                    | EIA/TIA-232                      | 3.3 V CMOS        |  |  |
| C & D | 9         | J40                    | 3.3 V CMOS                       | (none)            |  |  |

### XScale UART

The XScale processor supplies three standard serial ports. The "Bluetooth UART" is Serial 1 on the AGX; the "IrDA UART" is AGX Serial 2; and the "Full-featured" UART" is AGX Serial 3.

The Serial 2 IrDA signals are on J15. When Serial 2 is operated in IrDA mode, the serial driver should enable the IrDA transmitter with IrDAOn signal. The IrDA transceiver is normally mounted on the board (3.2.4), but as a factory option, a header can replace the transceiver for cabling to another location. Electrical specifications are listed in section 6.2.8.

The Serial 2 CTS and RTS serial handshaking signals are XScale GPIO lines that must be controlled by the software drivers when Serial 2 is operated as EIA/TIA-232 or 3.3 V CMOS.

Ports that are configured for 3.3 V CMOS operation connect directly to the XScale and should be treated electrically as GPIOs. See section 6.2.13 for GPIO electrical specifications and 6.2.8 for serial port specifications.

#### Quad UART

AGX includes a UART with four, full-featured ports. The ports are factory-configured for either EIA/TIA-232 or 3.3 V CMOS operation.

Ports that are configured for 3.3 V CMOS operation connect directly to the UART and should be treated carefully. See section 6.2.8 for serial port electrical specifications.

#### 4.5.2 USB

The AGX includes signals for USB 1.1 Host, Function and On-The-Go ports. The USB Host (downstream) signals are on socket J1 and header J15; the USB Function signals are on header J8; and the USB On-The-Go signals are on header J40. The PXA255 controls the USB Function port, while the Philips ISP1362 controls the USB Host and On-The-Go ports. The AGX can be configured as a self-powered hub, with one Host and one Client port.

To create a USB connection, you must wire a standard USB socket as described in the following sections. For each type of connector, pin numbering is as follows:

| Pin | USB signal |
|-----|------------|
| 1   | USB_PWR    |
| 2   | USB -      |
| 3   | USB +      |
| 4   | GND        |

#### USB Host Port



The AGX USB Host port allows you to connect one USB device to the AGX. USB mouse and keyboard are the most common client devices, but you can connect any USB function device that has USB drivers installed on the AGX.

The AGX includes Type A USB connector J1 for the host signals. You can also wire your own USB connector using the signals on J15 (section 3.4.13). The mating face of such a socket is shown at left. The USB standard also permits directly wiring the USB signals to the target USB device (e.g. USB mouse). To connect more than one USB client device to the AGX, use a USB hub.

The USB protocol allows client devices to negotiate the power they need from 100 mA to 500 mA in 100 mA increments. The AGX supplies 5 V power through the USB\_PWR pin. Make sure to account for power used through USB in your AGX power budget (section 5.3.1). It is recommended that you use a power switch. Electrical specifications are in section 6.2.9.

#### **USB** Function Port

The AGX includes a USB Function (or "Client") port. This interface allows the AGX to appear as a client device to USB Host devices such as desktop and laptop computers.

The USB Function signals are available on connector J8 (section 3.4.6). Connect these signals to a USB client Type B socket (mating face shown at left). The USB standard also permits directly wiring the USB signals to the host or to a host connector (e.g. USB mouse).

The AGX supports the full USB connection speed (12 Mbit/s). It indicates this to the host device with a 1.5 k $\Omega$  pull-up on the USB+ signal.

USB\_VCC is power supplied from the host computer. Since the AGX is self-powered (not powered by the USB host), USB\_VCC is not needed as a power input. However, USB\_VCC tells the AGX when a USB cable is connected, so include it when connecting the USB signals to the AGX.

The AGX includes the capability to simulate a Function port cable disconnection. This feature can be used to force the host to re-enumerate the AGX (e.g. after wakeup).

### USB On-The-Go

The USB controller on the AGX supports USB On-The-Go. This standard has the following features to better support mobile devices:<sup>11</sup>

- Limited host capability to communicate with selected other USB peripherals
- A small USB connector to fit the mobile form factor
- Low power features to preserve battery life

USB On-The-Go signals are on header J40 (section 3.4.18). Contact ADS Sales if your application requires USB On-The-Go, as drivers may not be available for all operating systems.

#### LED Activity Indicator

LED D20 (3.2.3) blinks to indicate when there is activity on the Philips USB ports.

#### 4.5.3 Ethernet

The AGX includes a 10/100 BT Ethernet controller with an RJ-45 socket (J7). The Ethernet signals are also available on header J9 (3.4.7) for connection to an off-board socket.

Details and electrical specifications are listed in section 6.2.10.

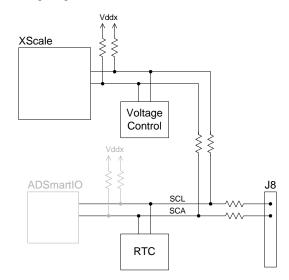
#### 4.5.4 CAN Bus

CAN bus (Controller Area Network) is a protocol developed for the automotive industry that is increasingly being used in industrial control and automation applications. The AGX includes a CAN controller suitable for connection to a wide range of CAN networks.

The CAN signals are available on headers J15 (3.4.13) and J17 (3.4.15). Details and electrical specifications are listed in section 6.2.11.

<sup>&</sup>lt;sup>11</sup> http://www.usb.org/developers/onthego

# 4.5.5 I<sup>2</sup>C Bus Master and SMBus


 $I^2C$  (Inter-IC) Bus is a multi-master, "two-wire" synchronous serial bus developed by Philips for communications between integrated circuits (ICs). The bus master addresses devices using the data line and provides a synchronous clock for reading and writing devices. Client devices respond only when queried by the master device. Philips has developed many  $I^2C$  devices, but other organizations have adopted  $I^2C$  as a convenient means for addressing peripherals in a system.

# $^{2}C$ on the AGX

The AGX uses an  $I^2C$  bus to communicate with onboard peripherals. The XScale processor is the primary bus master, with an option to use the ADSmartIO controller as a secondary  $I^2C$  bus master in custom applications.

The AGX uses the  $I^2C$  interface to communicate with the real-time clock (section 4.2) and the CPU core voltage controller.  $I^2C$  can also be used to communicate with external devices.

The following diagram illustrates the I<sup>2</sup>C architecture on AGX.



# XScale l<sup>2</sup>C

The XScale typically controls all  $I^2C$  peripherals on the AGX. Its  $I^2C$  signals are routed to header J8 via low-impedance resistors. The XScale  $I^2C$  bus can be disconnected from the external bus (and the real-time clock) for custom applications. Specifications are listed in section 6.2.13.

# ADSmartIO PC

The ADSmartIO emulates an  $I^2C$  bus master using PC6 as SCL and PC7 as SDA. These signals are available on J8 for expansion to off-board devices. Specifications are listed in section 6.2.6.

The ADSmartIO is connected to the  $I^2C$  bus for backward compatibility with previous ADS designs, but is not recommended for new designs. To indicate this status, ADSmartIO  $I^2C$  is "grayed-out" in the diagram above. Use the XScale  $I^2C$  controller for new applications.

### SMBus

SMBus (System Management Bus) is a protocol developed by Intel that is similar to I<sup>2</sup>C. Some laptop and desktop computers use SMBus to manage system power using the ACPI standards.<sup>12</sup> A subset of SMBus, the Smart Battery protocol, uses SMBus to communicate with "intelligent" batteries and chargers.<sup>13</sup>

Key differences<sup>14</sup> between I<sup>2</sup>C and SMBus include:

- Bus speed: The SMBus clock rate must be between 10 kHz and 100 kHz while I<sup>2</sup>C can run between DC and 400 kHz.
- Timeout

SMBus slave devices time out and reset their communication interfaces if there is more than a 35 ms delay in the clock.  $I^2C$  doesn't have a timeout.

 Current draw on bus SMBus devices must draw between 100 and 350 μA; I<sup>2</sup>C devices can draw up to 3 mA.

The AGX implementation of  $I^2C$  will work with most SMBus devices. The most likely point of conflict is in the AGX  $I^2C$  bus current draw (see the pull-up resistor specifications in section 6.2.6 and 6.2.13). If your configuration will use  $I^2C$  as an SMBus controller, contact ADS Sales to discuss the AGX configuration you'll require.

#### 4.5.6 Multimedia Card (MMC) Controller

The XScale MMC controller provides a serial interface to MMC cards. The controller supports up to two cards in either MMC or SPI modes with serial data transfers up to 20 Mbps. The MMC controller has FIFOs that support DMA access to and from memory.

This interface can also be used to access Secure Digital (SD) Memory Cards and Secure Digital I/O (SDIO) cards. See Intel Application Note 278533 for details and pitfalls.

Signals for the MMC Controller are brought out to header J7. See the XScale Developer's Manual for details about how to use the MMC interface.

Drivers for MMC may not be available for all operating systems. Contact ADS for driver availability for the operating system you are using.

<sup>&</sup>lt;sup>12</sup> ACPI: Advanced Configuration and Power Interface, http://www.acpi.info

<sup>&</sup>lt;sup>13</sup> Smart Battery Implementers Forum:,http://www.sbs-forum.org/

<sup>&</sup>lt;sup>14</sup> Maxim application note 356, http://dbserv.maxim-ic.com/appnotes.cfm?appnote\_number=356

# 4.6 Discrete I/Os

This section describes discrete signals on the AGX that can be used for control input or output.

#### 4.6.1 Digital I/Os

The ADSmartIO, system controller and Epson display controller supply discrete digital I/Os on the AGX. Each discrete digital signal can be configured as an input or an output.

The ADSmartIO digital I/Os are available on header J14 (3.4.12) and are described in section 4.3.3.

The seven system controller digital I/Os (*CPLDIOn*) are available on headers J8 (3.4.6) and J14 (3.4.12). See section 6.2.7 for electrical specifications.

When installed, the Epson display controller supplies the digital I/Os available on header J8 (3.4.6). See section 6.2.4 for electrical specifications.

### 4.6.2 Analog Inputs

The inputs on the ADSmartIO controller can be configured as analog inputs. These are known as ANIN1 to ANIN3 on header J8 (3.4.6). See ADSmartIO section 4.3.4 for details.

In addition, one input on the touch panel controller can also be used as an analog input. This signal is called ANIN0 and is found on header J8 (3.4.6).

### 4.6.3 Analog Outputs (PWM)

The AGX has two analog outputs. These are used to control LCD backlighting and contrast (section 4.8.3).

### 4.7 Touch Panel

The AGX supports four and five-wire analog resistive touch panels. Five-wire panels are a factory option. Connect the touch panel to the inputs on connector J3. The touch panel controller can wake the system from sleep (section 5.2.4) Electrical details are listed in section 6.2.5.

## 4.8 Display Controller

The AGX can be factory configured to use either the integrated XScale display controller or the Epson S1D13806 controller. This section describes both controllers and the AGX features they use in common.

### 4.8.1 The XScale Display Controller

The XScale controller uses system memory for the display frame buffer. It can drive VGA (640x480) and SVGA (800x600) displays easily. Larger displays will work with the XScale, with some constraints imposed by the controller architecture. The ADS Support Forums provide details about the design tradeoffs that are required to support larger displays.<sup>15</sup>

Key features of the XScale controller include

- Frame buffer stored in system DRAM
- DMA from RAM to LCD controller
- Dual 16 x 8-byte display data FIFOs

#### 4.8.2 The Epson Display Controller

The Epson controller has its own frame buffer, which reduces the load on the system bus for displays with larger dimensions and higher refresh rates. The controller also includes analog CRT outputs suitable for connecting to NTSC and PAL (television) monitors.

Features of the controller include:

- 1280 kiB frame buffer
- Digital LCD output
- Analog CRT or TV(NTSC/PAL, Composite/S-Video) output
- Hardware display rotation ("swivel")
- Dual and Virtual display support
- Hardware cursor (mouse)
- 2D display engine
- General-purpose digital I/Os

Standard development systems make use of the basic features of the display controller. Contact ADS Sales if your application requires use of the advanced features of this controller. Electrical specifications for the controller are listed in section 6.2.4.

#### 4.8.3 Using the LCD Display Signals

This section describes the features of the AGX used to control LCD displays. LCD display signals are found on headers J3, J11, J12, J15 and J19.

#### Panel Voltages

The AGX supplies 3.3 V or 5 V power to the LCD display. Select this voltage with JP1 (section 3.3.1). Please observe the cautions listed with the JP1 settings.

<sup>&</sup>lt;sup>15</sup> Currently posted at http://www.applieddata.net/forums/topic.asp?topic\_id=580

# LCD Signals

The LCD signals are driven by either the XScale or the Epson controller. The signals are named using the XScale conventions (L\_DDn).  $L_DD0$  through  $L_DD15$ --as well as the pixel clock, vertical sync and horizontal sync--are all buffered at a factory-set voltage. See section 6.2.4 for full specifications.

The *PNL\_RL* and *PNL\_UD* signals are for active (TFT) displays that support changing the scan direction. This feature allows the display to be flipped right-to-left (*RL*) or up-and-down (*UD*) by changing the voltage on these signals. See section 6.2.4 for full specifications.

### Creating LCD Display Cables

ADS has designed cables for a wide variety of displays. See the list of supported displays on the ADS support forums. Cable drawings for supported displays are available on request.

While ADS does not provide support to customers to create their own cables, designers with LCD display experience may be able to design their own. For those that do so, a key point to keep in mind is that the PXA255 LCD interface maps its display controller pins differently based on LCD technology and color palette size. The following table illustrates how they are mapped for some of the more common technologies. Consult the PXA255 User's Manual for more information.

| XScale <sup>16</sup> | Color     | Active    | Colo | r Pa   | ssive  | Mono Passive |        |                             |        |
|----------------------|-----------|-----------|------|--------|--------|--------------|--------|-----------------------------|--------|
| Signal Name          | 16-bit    | 12-bit    | Dual |        | Single | Dual         |        | Single<br>DPD <sup>17</sup> | Single |
| L_DD0                | BO        | BO        | DU0  |        | D0     | DU0          |        | D0                          | D0     |
| L_DD1                | <i>B1</i> | <i>B1</i> | DU1  |        | D1     | DU1          | top    | D1                          | D1     |
| L_DD2                | B2        | B2        | DU2  |        | D2     | DU2          |        | D2                          | D2     |
| L_DD3                | <i>B3</i> | <i>B3</i> | DU3  | top    | D3     | DU3          |        | D3                          | D3     |
| L_DD4                | <i>B4</i> |           | DU4  |        | D4     | DL0          | ı      | D4                          |        |
| $L_DD5$              | G0        | G0        | DU5  |        | D5     | DL1          | ton    | D5                          | not    |
| $L_DD6$              | <i>G1</i> | <i>G1</i> | DU6  |        | D6     | DL2          | bottom | D6                          | used   |
| $L_DD7$              | G2        | G2        | DU7  |        | D7     | DL3          |        | D7                          |        |
| $L_DD8$              | <i>G3</i> | <i>G3</i> | DL0  |        |        |              |        |                             |        |
| $L_DD9$              | <i>G4</i> |           | DL1  |        |        |              |        |                             |        |
| L_DD10               | G5        |           | DL2  | ~      |        |              |        |                             |        |
| L_DD11               | RO        | RO        | DL3  | tom    |        | 100          | + 1150 | d                           |        |
| L_DD12               | <i>R1</i> | <i>R1</i> | DL4  | bottom |        | not used     |        |                             |        |
| L_DD13               | <i>R2</i> | <i>R2</i> | DL5  | _      |        |              |        |                             |        |
| L_DD14               | <i>R3</i> | <i>R3</i> | DL6  |        |        |              |        |                             |        |
| L_DD15               | <i>R4</i> |           | DL7  |        |        |              |        |                             |        |
| L_PCLK               | PCLK      |           | PCLK |        |        |              |        |                             |        |
| L_LCLK               | HSYNC     |           |      | LCLK   |        |              |        |                             |        |
| L_FCLK               | VSYNC     |           |      | FCLK   |        |              |        |                             |        |
| L_BIAS               | D         | E         |      | LBIAS  |        |              |        |                             |        |

<sup>&</sup>lt;sup>16</sup> Intel. <u>PXA255 Processor: Developer's Manual.</u> Order number 278693-001, March 2003. pp. 7-20 to 7-22.

<sup>&</sup>lt;sup>17</sup> Double pixel data (DPD) mode = 1

# LVDS for LCD Displays

The AGX includes an LVDS (Low-Voltage Differential Signaling) driver suitable for driving some LCD displays. LVDS multiplexes digital signals together onto differential pairs. LVDS has the advantage of using fewer wires, longer cable lengths and lower radiated noise.

LVDS signals are available on header J12. The table in section 3.4.10 illustrates how the display signals are multiplexed onto the LVDS differential pairs.

Electrical specifications for the LVDS transmitter are provided in section 6.2.4.

# Brightness Control (Backlight)

Most LCD displays include one or more cold-cathode fluorescent lamp (CCFL) tubes to backlight the displays. Some LCDs, such as passive transflective displays, can be viewed in daylight without backlighting.

Panel backlights are driven by backlight inverters. These circuits are typically external to the display and generate the several hundred volts required to drive the CCFL tubes. Backlights can easily become the greatest source of power consumption in a portable system. Fortunately, most backlight inverters include control signals to dim and turn off the backlight.

The AGX supplies two signals for backlight control: BacklightPWM and /BacklightOn. The signals are found on both J3 and J15. BacklightPWM is a filtered PWM signal from the PXA255 that supplies an analog output voltage to control the intensity of the backlight. The /BacklightOn signal is an open-collector output to turn the backlight on and off. See section 6.2.4 for electrical specifications.

### Contrast Control (Vee and Vcon)

Vee and Vcon are used to control the contrast of passive panels. Many passive panels require a positive or negative bias voltage in the range of fifteen to thirty volts to bias the passive LCD display.

Some displays include a Vee generator and simply require a low-voltage analog signal to control the contrast. The Vcon output is a PWM-controlled output that can be used for this purpose. Electrical specifications for Vee and Vcon are listed in section 6.2.4.

### 4.8.4 Using Analog Displays

The AGX can support several analog display types when the Epson display controller is installed. The signals for VGA and CRT output are available on header J9 (3.4.7). For the analog display modes supported, these signals are mapped as follows:

| IO Dim      | J9 Signal | CRT              | TV        |             |  |
|-------------|-----------|------------------|-----------|-------------|--|
| J9 Pin      | Name      | CKI              | Composite | S-Video     |  |
| 3           | VGA_VSYNC | Vertical retrace |           |             |  |
| 4           | VGA_HSYNC | Horiz. retrace   |           |             |  |
| 6           | CRT_VCC   |                  |           |             |  |
| 8           | VGA_BLUE  | Blue             |           | Chrominance |  |
| 10          | VGA_GREEN | Green            | Composite |             |  |
| 12          | VGA_RED   | Red              |           | Luminance   |  |
| 5, 7, 9, 11 | GND       | Ground           | Ground    | Ground      |  |

# 4.8.5 Developing Display Drivers

ADS provides display timings for supported displays on request. For displays not yet supported, ADS has a panel configuration service to creates panel timings and cable drawings. Contact ADS Sales for further details.

# 4.9 EMI/RFI and ESD Protection

The AGX board incorporates a number of industry-leading features that protect it from electrostatic discharge (ESD) and suppress electromagnetic and radio-frequency interference (EMI/RFI). Transient voltage suppressors, EMI fences, filters on I/O lines and termination of high-frequency signals are included standard on all systems. For details, see electrical specifications for subsystems of interest.

### 4.9.1 Agency Certifications

Many products using ADS single-board computers have successfully completed FCC and CE emissions testing as a part of their design cycle. Because ADS supplies only the single-board computer and not fully integrated systems, ADS cannot provide meaningful system-level emissions test results.

The crystal frequencies (section 6.2.14) and electrical specifications listed in Chapter 6 may provide helpful information for agency certifications.

### 4.9.2 Protecting the Power Supply Inputs

It is the responsibility of the designer or integrator to provide surge protection on the input power lines. This is especially important if the power supply wires will be subject to EMI/RFI or ESD.

# 5 Power and Power Management

Power management is especially critical in portable and handheld applications where battery power is at a premium. The AGX includes advanced power management features, including the low power XScale CPU and partitioned power distribution. The AGX can also operate as a conventional single-board computer, taking advantage of the inherently low power consumption of the system.

This chapter describes the architecture of the AGX power supply, factors affecting power consumption and reference designs to get you started. For information about how much power the AGX consumes, consult the electrical specifications in section 6.2.3.

### 5.1 Power Management Modes

Most handheld and portable systems available today never really turn "off." They make use of power management algorithms that cycle the electronics into "standby" and "sleep" modes, but never fully remove power from the full system.

This section describes the various power management modes of the XScale processor and how the AGX makes use of them.

### 5.1.1 XScale Power Management Modes

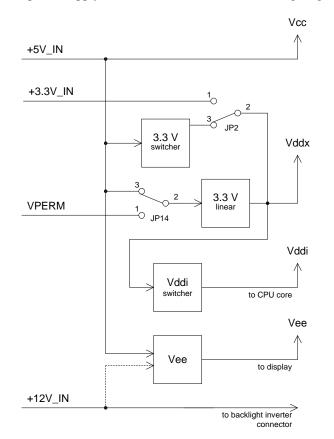
The XScale PXA255 processor supports four operational modes: Turbo, Run, Idle, and Sleep.

- Sleep mode uses the least amount of electrical power. The processor core is powered off and only a few processor peripherals (RTC, I/Os and interrupt control) remain active. The transition back to Run mode may take a few hundred milliseconds, as clocks must stabilize and hardware that was powered off must be reinitialized.
- Idle mode reduces power consumption by pausing the processor core clock. Processor peripherals remain enabled. This mode is used for brief periods of inactivity and offers a quick transition back to Run mode.
- Run mode is the typical mode used when applications are running. It offers the best MIPS/mW (performance vs. power) performance when running applications from RAM.
- Turbo mode runs the processor core at up to three times the Run mode speed. Since external memory fetches are still performed at the memory bus frequency, Turbo mode is best used when running the application entirely from cache.

#### 5.1.2 Power Management on the AGX

The AGX can actively be configured to be in XScale Run, Turbo or Sleep modes. Idle mode is controlled by the operating system or application and is typically transparent to the application.

In Turbo, Run and Idle modes, the power supplies are in their standard, full-power state and applications run normally on the system. Specific subsystems (as described in section 5.2.2) may be selectively disabled to conserve power during these states. The operating system is responsible for adjusting the core voltage (Vddi) for optimal power consumption in each mode.


In Sleep mode, sometimes called "Suspend" mode, the processor puts the SDRAM in a lowpower, self-refresh mode, the processor core shuts off, most peripheral sub-systems are shut down and the power supplies drop into low-power states or turn off entirely (see the diagram in section 5.2.2 for details). In this state, the AGX consumes very little power, most of which is dedicated to the maintenance of the RAM (see section 6.2.3 for specifications). The system can be "awakened" and returned to the Run state by initiating a system wakeup using one of the methods described in section 5.2.3.

#### 5.2 Architectural Overview and Power Management Features

This section provides an overview of the architecture of the AGX power supply and a description of the various features of the AGX power management systems.

#### 5.2.1 Power Supply Architecture

The AGX power supply is laid out as shown in the following diagram.



Vddi is a variable-voltage power supply controlled by the XScale  $I^2C$  bus (4.5.5, 6.2.2). This voltage scaling feature allows the operating system to manage power consumption over the full range of CPU clock rates.

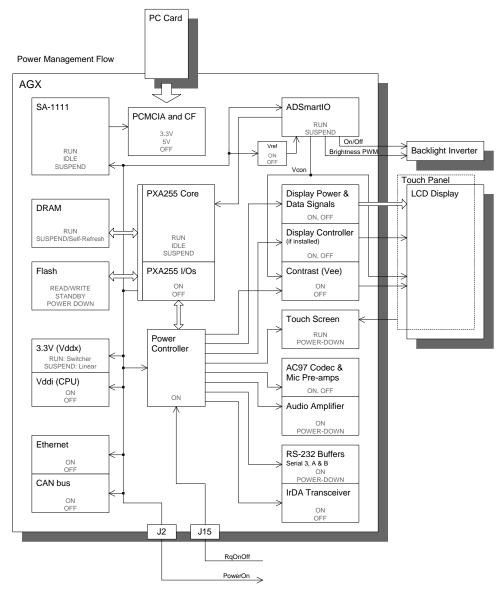
Factory options available are indicated by dashed lines in the diagram above. The options shown are available for production customers, but are outside the scope of this manual. Contact your ADS sales representative if you believe one or more of these options is required for your application.

Specifications for the AGX power supply are listed in section 6.2.2.

#### 5.2.2 Subsystem Partitioning

The AGX can selectively turn off power to subsystems on the board. This load-shedding feature can extend battery life. Applications and the operating system determines how selective power management is utilized.

AGX systems that can be selectively disabled include the following:


- LCD display (panel power and signal buffers)
- Display controller (if installed)
- Backlight
- Vee (contrast)
- Audio codec and microphone pre-amps
- Audio output amplifier
- Serial A, B and 3
- IrDA transceiver

In addition, the AGX also controls its core power supplies to support sleep operation:

- Vddx (3.3 V)
- Vddi (processor core)

The following diagram illustrates the architecture of the AGX power management system. At the heart of the system is a power controller that controls the state of the various power subsystems of the AGX. Under control of the XScale processor, this controller can manage most of the power distribution of the board. The XScale PowerEnable signal controls the rest of the subsystems.<sup>18</sup>

<sup>&</sup>lt;sup>18</sup> The controller inverts the PowerEnable signal for use with some subsystems. This details is not shown in the diagram.



In the diagram, the power management modes of each subsystem are indicated in gray. Arrows indicate the direction of both signal flow and of power management.

#### 5.2.3 System Sleep

This section describes several methods for putting the system into Sleep mode. Section 5.2.4 describes how to return the system to its operating state.

#### RQOnOff Input

Operating systems and applications can configure the /RQONOFF signal (J9.15) to put the system to sleep. In conjunction with the wakeup function (section 5.2.4, below), the RQONOFF input can be used as an "on/off" button for some systems. Electrical specifications are listed in section 6.2.1.

# Software Control

Applications can put the system to sleep programmatically. Operating systems may also put the system to sleep if the system has not been used for a certain amount of time or for other reasons. In remote, battery-powered applications, software Sleep can be used in conjunction with the Timed Wakeup feature (section 5.2.4) for minimum power consumption.

## 5.2.4 System Wakeup

This section describes several mechanisms for waking an AGX system that has been placed in Sleep mode (section 5.2.3). The system will resume operation in Run mode unless the power supply voltage is lower than Vsleep (section 6.2.1). If the input voltage is too low, the system will not wake under any circumstances. This protects the RAM from getting corrupted by an undervoltage condition.

### RQOnOff Input

Shorting the /RQONOFF signal (section 5.2.3 above) to ground will wake the system. The signal is connected to the system controller. Electrical specifications are listed in section 6.2.7.

### Touch Panel

The touch panel controller interrupts the processor when touch panel events occur. Before going to sleep, the processor can place the controller in a low-power sleep mode. When a touch event occurs, the controller still generates an interrupt, which can wake the system.

### Timed Wakeup

The XScale can wake up at a predetermined time. This feature is controlled by software.

### **ADSmartIO**

The ADSmartIO controller controls the wakeup signal to the XScale. For production applications, ADS can configure the ADSmartIO to wake up the system on specific events. Contact ADS Sales if your application requires a special wakeup event.

#### 5.2.5 Backlight Power

The AGX provides software control of Backlight Intensity and On/Off. Power for the backlight is routed through the board from header J2. This provides the greater flexibility when selecting backlight inverters for an application. See section 4.8.3 for further details about backlight control.

### 5.2.6 Power Supply Efficiency

The AGX power supply achieves high efficiency through several means. First, it utilizes highefficiency switching regulators. These regulators use conventional step-down switchers under operating load conditions, but are configured by the system for linear and "burst" mode<sup>19</sup> operation during low-load conditions that occur during system sleep. Additionally, there is only one level of cascaded regulation, reducing the losses that multiply through each stage.

<sup>&</sup>lt;sup>19</sup> "Burst mode" in this context is a registered trademark of Linear Technology Corporation

# 5.3 Designing for Optimal Power Management

Designing a system for optimal power management requires careful attention to many details. This section provides some guidelines and tips for best power management.

# 5.3.1 Create a Power Budget for Peripherals

Embedded system designers using the AGX should have a clear understanding of how power usage will be allocated in the system they design. Designers should create a power budget that takes into account the types of devices that are expected to be used with the AGX.

The following lists detail some of the typical external loads that can be placed the AGX power supplies. Baseline power consumption of the AGX is listed in section 6.2.3.

### 3.3 V Loads

Typical external loads on the 3.3 V power supply include the following:

- Display
- Personality Board
- CF and some PCMCIA cards

### 5 V Loads

 $5\ V$  loads come from both onboard and external devices. Typical loads include the following:

External:

- Display
- Many PCMCIA cards
- USB devices
- PS/2 keyboard
- Speaker(s) Assume 80% efficiency

#### Onboard:

• 3.3 V Supply Multiply by 115% to account for 3.3 V power supply efficiency

#### Loads on Main Supply

The main 5 V power supply is loaded by the and 3.3 V supplies as indicated in the diagram of section 5.2.1. Assume 85% efficiency for external loads that cascade through the 5 V supply. Consider these loads when creating your power budget.

#### 5.3.2 Power Loads During Sleep

When designing systems for minimal power consumption during Sleep mode, make sure to consider DC losses to external connections. The following are a few of the ways your system may "leak" when asleep:

• PCMCIA and CF cards

Cards in place when the system is asleep can drain power through the Card Detect and Voltage Sense lines. Assume that all four lines ground the AGX PCMCIA pull-ups (section 6.2.15) while the card is inserted.

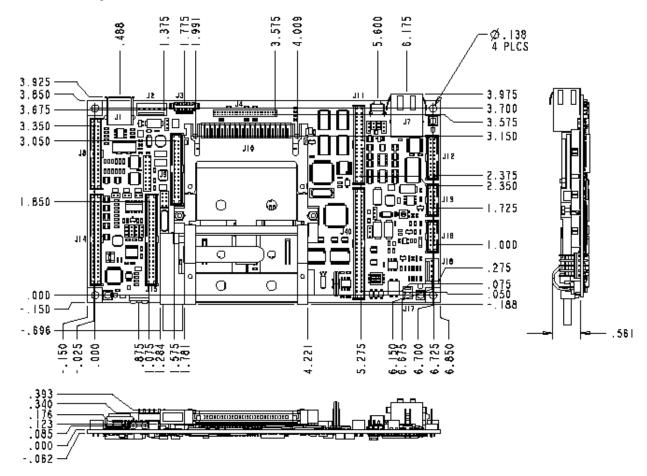
#### • Digital I/Os

Review digital I/O connections for potential voltage differences from external connections when the AGX is asleep.

• USB

Depending on how USB devices are powered and how the operating system handles USB, USB devices may draw power during Sleep.

(This page intentionally blank)


# 6 System Specifications

### 6.1 Mechanical Specifications

The AGX is 4.0 inches by 7.0 inches in size. This section describes the component dimensions and mounting of the board. Detailed drawings are available on the support forums (section 2.4), and 3D models are available from ADS in electronic format for production customers.

### 6.1.1 Mechanical Drawing

The following mechanical drawing specifies the dimensions of the AGX, as well as locations of key components on the board. The PCMCIA ejector can be detached from the board header and is a factory option. All dimensions are in inches. This image is an excerpt from the full mechanical drawings, ADS document number 630115-40001.



### 6.1.2 Mounting Holes

Four holes are provided, one on each corner, for mounting. The diameter of the holes is 0.138-in. Mounting holes are plated through and connected to the AGX ground plane.

For reliable ground connections, use locking washers (star or split) when securing a AGX in an enclosure. Make sure that washers do not extend beyond the limits of the pads provided.

## 6.1.3 Clearances

The AGX has a low profile. It can fit in an enclosure with inside dimensions as thin as 0.853 inch (21.7 mm). Key clearances are as follows:

- Highest component: 0.561 inch (14.2 mm), top 0.130 inch (3.3 mm), bottom
- Board thickness: 0.062 inch (1.57 mm)
- Clearance over top and bottom: 0.05 inch (1.3 mm), each

Note: Selection of connectors and wiring harnesses will determine height of final assembly.

### 6.1.4 Production Options

The AGX has a number of production options detailed throughout this manual. This section describes options that most significantly affect the mechanical design of the board. These options are generally available only for volume production orders.

### Mating Headers on Underside of Board

The four system signal headers—J1, J3, J9 and J10—can be mounted on the underside of the AGX. This allows the AGX to sit on top of another board.



Important! When the headers are placed on the underside of the board, the pin numbers will not correspond to the signals as described in this manual. Lay out the mating board with this in mind.

### Removal of PCMCIA Header

Systems can be produced without the PCMCIA header. However, since most ADS operating system ports rely on the header for file updates, this option is not recommended. A special operating system build may be needed if the PCMCIA header is removed.

### **Connector Plating**

Most connectors on the AGX come standard with tin plating, which is suitable for most applications. For applications where the headers will go through many insertion/removal cycles, ADS can populate headers with gold or other suitable platings. The PCMCIA header comes standard with gold plating.

## 6.2 Electrical Specifications

### 6.2.1 Reset, Sleep, Wakeup, Temperature

#### **Absolute Maximum Ratings**

| Symbol          | Parameter                                 | Min  | Тур. | Max  | Units |
|-----------------|-------------------------------------------|------|------|------|-------|
| Temperature     |                                           |      |      |      |       |
| Trun            | operating temperature                     | -40  |      | +85  | °C    |
| Reset_In (J10.4 | 5)                                        |      |      |      |       |
| Vrst            | trigger voltage (Note 2)                  |      | 2.7  |      | V     |
| Vprst           | pull-up voltage                           |      | Vddx |      | V     |
| Rprst           | pull-up resistance                        |      | 47   |      | kΩ    |
| Sleep (5.2.3)   |                                           |      |      |      |       |
| Vsleep          | Sleep trigger voltage (Note 3)            | 5.4  |      | 5.8  | V     |
| Vsleep,hyst     | Sleep trigger release hysteresis (Note 4) | 0.06 |      | 0.25 | V     |
| Wakeup: RqOn    | Off (5.2.5)                               |      |      |      |       |
| trq             | wakeup pulse duration (Note 5)            | 100  |      |      | ms    |
| Vprq            | pull-up voltage                           |      | Vddx |      | V     |
| Rprq            | pull-up resistance                        |      | 47   |      | kΩ    |
| Vih,max         | maximum input voltage                     |      |      | 3.3  | V     |
| Vil             | trigger voltage                           |      |      | 0.9  | V     |

Notes:

- 1. The reset controller can support operating voltages up to 10 VDC. However, such high voltages on Vddx through the pull-up resistor may damage the system.
- 2. Short /Reset\_In to GND to reset system
- This is the voltage at VBATT\_POS at which the DC\_GOOD signal (4.3.6) changes from high to low, which can trigger the system to go into Sleep mode. Sleep trigger at DCIN\_POS is Vsleep+Vdin (6.2.2).
- 4. Important! Once Vsleep has been triggered, the input voltage must rise at least Vsleep, hyst above Vsleep before the voltage detector will restore the DC\_GOOD signal. Make sure that your input voltage is designed to always run above Vsleep+Vsleep, hyst, or systems that go to sleep may not be able to wake again.
- Short /RqOnOff to GND to for at least trq to wake up system. A low-level voltage on /RqOnOff initiates wakeup.

### 6.2.2 Power Supply

The AGX is powered from a 5 V DC supply. It generates additional voltages for onboard logic. The 5 V and 3.3 V supplies are available on the AGX output connectors and are limited to the current draws specified below.

The system time is maintained by a DS1307 real-time clock and powered by a long-life battery.

| Symbol         | Parameter                                            |            | Min  | Тур. | Max  | Units |
|----------------|------------------------------------------------------|------------|------|------|------|-------|
| System Power   |                                                      |            |      |      |      |       |
| 5V_IN          | 5.0 V power input                                    |            | 4.75 | 5.0  | 5.25 | V     |
| VDDI           | Processor core voltage (6.2                          | 2.13)      | 0.85 | 1.0  | 1.3  | V     |
| VDDX           | 3.3 V onboard supply                                 | Run        | 3.1  | 3.3  | 3.5  | V     |
| VDDA           | 3.3 V Oriboard Supply                                | Sleep      |      | 3.15 |      | V     |
|                | 3.3 V available for<br>display, PCMCIA,              | Run        |      |      | 700  | mA    |
| l (Vddx)       | external peripherals, etc. (Note 6)                  | Sleep      |      |      | 100  | mA    |
| I (Vcc)        | 5 V available for display an<br>peripherals (note 7) | d external |      |      | 1000 | mA    |
| RTC Backup Pov | RTC Backup Power (4.2)                               |            |      |      |      |       |
| V BATPOS       | real-time clock battery bac                          | kup        | 2.2  | 3.0  | 3.6  | V     |
| I BATPOS       | RTC current (note 8)                                 |            |      | 300  | 500  | nA    |

Notes:

- 6. During Sleep mode, Vddx is powered by a linear regulator, which draws from the 5V supply.
- 7. In addition to the external  $5V_{IN}$  power supply, the 5 V output is limited by the trace widths on the printed wiring board.
- 8. Vddx=0V, Vbatpos=3.2 V (source: DS1307 data sheet)

### 6.2.3 Power Consumption

The following table lists typical power consumption for the AGX with varying activity levels.

Power consumption varies based on peripheral connections, components populated on the system and the LCD panel connected. Input voltage, temperature and the level of processor activity affect power consumption to a lesser extent.

LCD displays and backlights add significantly to the total power consumption of a system. ADS development systems include the Sharp LQ64D343 5V TFT VGA display, which draws about one watt, and the Xentek LS520 backlight inverter, which draws about six watts at full intensity.

| Symbol  | Parameter                        | Min | Тур.  | Max | Units |
|---------|----------------------------------|-----|-------|-----|-------|
| P sleep | Sleep mode power                 |     |       |     | mW    |
| P idle  | Idle mode power (note 9)         |     | [tbd] |     | mW    |
| P run   | Run mode power (note 10)         |     |       |     | mW    |
| P turbo | Turbo mode consumption (note 11) |     |       |     | mW    |

Notes: Power consumption was measured on a fully populated 64 MiB AGX with no peripheral connections under the following conditions:

- 9. System running only the Windows CE desktop (predominantly in Idle mode; <5% CPU utilization)
- 10. Full (95-100%) processor utilization in Run mode achieved by running multiple instances of a graphical application under Windows CE.
- 11. Full (95-100%) processor utilization in Turbo mode achieved by running multiple instances of a graphical application under Windows CE.

### 6.2.4 Display

LCD display panels have a wide range of voltage and data requirements. The AGX has a number of adjustable voltages to support these requirements, as well as controls for brightness (backlight) and contrast (passive panels only). See section 4.8 for further details.

The AGX has the factory option to install the Epson SID13806 display controller (see section 4.8.2 for details). The digital I/Os listed are driven by the Epson controller.

The LVDS signals are driven by the National Semiconductor DS90C363A LVDS transmitter.

| Symbol                | Parameter                                      | Min   | Тур.  | Max   | Units |
|-----------------------|------------------------------------------------|-------|-------|-------|-------|
| LCD (4.8.3)           |                                                |       |       |       |       |
| V pnl                 | LCD voltage (note 12)                          | 3.3   |       | 5.0   | V     |
| P pnl_pwr             | LCD power (note 13)                            |       |       | 2     | W     |
| V pnl_data            | LCD data voltage (note 14)                     | 3.3   | 3.3   | 5.0   | V     |
| Scan Direction (ac    | tive displays) (3.3.9, 3.3.10, 4.8.4)          |       |       |       |       |
| R pnl_scan            | Pull-up resistance                             |       | 4.7   |       | kΩ    |
| V pnl_scan            | Pull-up voltage                                | 0     | V pnl | V pnl | V     |
| Contrast Control (p   | bassive displays) (3.2.5, 3.3.7, 4.8.3, note   | e 15) |       |       |       |
| Vee(-)                | Contrast adjust, R <sub>L</sub> =5kΩ, JP9: 1-2 | -30   |       | -15   | V     |
| Vee(+)                | Contrast adjust, R <sub>L</sub> =5kΩ, JP9: 2-3 | 15    |       | 30    | V     |
| Vcon                  | Low-voltage contrast adjust (note 15)          | 0     |       | 0.75  | V     |
| Brightness Control    | (backlight, 4.8.3)                             |       |       |       |       |
| R backlightOn         | Pull-up                                        |       | 10    |       | kΩ    |
| V backlightOn         | With pull-up (note 16)                         |       |       | 12    | V     |
| V DacklightOn         | No pull-up (factory option, note 17)           |       |       | 30    | V     |
| V backlightPWM        | PWM (note 18)                                  | 0     |       | 5     | V     |
| R backlightPWM        | PWM series resistance (note 19)                |       | 2.2   |       | kΩ    |
| LVDS (4.8.3)          |                                                |       |       |       |       |
| R term                | Termination resistance, each pair              |       | 200   |       | Ω     |
| V lvds                | Driver power supply                            |       | 3.3   |       | V     |
| Digital I/Os (J8, 3.4 | 4.6; 4.6.1; note 20)                           |       |       |       |       |
| Voh                   | High-level output voltage                      | 3.0   |       |       | V     |
| Vol                   | Low-level output voltage                       |       |       | 0.3   | V     |
| l gc_io               | Sink/Source current                            | -6    |       | 6     | mA    |

Notes:

- 12. Jumper JP1 (3.3.1) selects the display voltage.
- 13. Total power available depends on system power budget.
- 14. Systems are configured at the factory with buffers for 3.3 or 5 V panel data. Jumper JP3 (3.3.3) selects the voltage for those buffers. 5 V displays with Vih <= 0.6•Vpnl\_pwr (3.0 V) will work reliably with 3.3 V data. 3.3 V buffers can be run at 5 V for test purposes, but if your application requires 5 V data, contact ADS Sales to ensure the correct buffers are used for your display.</p>
- 15. Vcon is the filtered, low-voltage PWM signal used to control Vee. It can be used directly with some passive displays to control contrast. Vcon and Vee are controlled by PXA255 PWM0. Vcon is the 3.3 V PWM signal RC filtered with a 25% (20k/6.8kΩ) voltage divider.
- 16. The "12 V" voltage is supplied at power header J2, pin 4. The BacklightOn signal is an open-collector output managed by the system controller CPLD.
- 17. As a factory option, the pull-up resistor can be removed for use with an external pull-up resistor. The maximum voltage rating of the transistor is listed.
- 18. The standard configuration for BacklightPWM signal is as an open collector output with a 5 V pull-up. The output can also be factory configured as 5 or 12 V open collector or 3.3 V, push-pull CMOS output, with or without an output filter capacitor. The "12 V" voltage is supplied at power header J2, pin 4.
- 19. The backlight PWM output is driven by PXA255 PWM1.
- 20. These digital I/Os are available only if the Epson display controller is installed.

### 6.2.5 Touch Panel Controller

The AGX uses touch panel controllers from Burr Brown. It uses the ADS7846 to support fourwire analog-resistive touch panels and the ADS7845 to support five-wire panels. The system is factory-configured for use with four-wire panels. All touch-panel signals are ESD and RF protected. The touch panel controller is powered during sleep mode and can generate an interrupt to wake the system.

| Symbol | Parameter             | Min | Тур. | Max | Units |
|--------|-----------------------|-----|------|-----|-------|
| Vdd    | Supply voltage        |     | Vddx |     | V     |
|        | A/D sample resolution |     | 12   |     | bit   |

#### 6.2.6 ADSmartIO Controller

The ADSmartIO Controller is a second RISC microcontroller on the AGX designed to handle I/O functions autonomously. The AGX communicates with the ADSmartIO controller via the system controller CPLD. On the AGX, ADSmartIO is implemented with the Atmel AVR 8535 microcontroller, which has 512 bytes EEPROM.

#### **Absolute Maximum Ratings**

| Input voltage, any pin                | 3.8 V        |
|---------------------------------------|--------------|
| Input voltage, A/D inputs PA5-PA7 (no | ote 25) 15 V |

| Symbol               | Parameter                                           | Min                     | Тур. | Max      | Units |
|----------------------|-----------------------------------------------------|-------------------------|------|----------|-------|
| Vdd                  | ADSmartIO supply voltage                            |                         | 3.3  | тал      | V     |
| Rs                   | Series resistance (note 21)                         |                         | 1    |          | kΩ    |
| Vprot                | (note 21)                                           |                         |      |          | V     |
| Digital Outputs (4.  | 3.3)                                                | 1                       |      | <b>I</b> | 1     |
| Vol                  |                                                     |                         |      | 0.5      | V     |
| Voh                  |                                                     | 2.3                     | 3.3  |          | V     |
| l sink               | (see notes 21, 22)                                  |                         |      | 20       | mA    |
| I source             | (see notes 21, 22)                                  |                         |      | 12       | mA    |
| Digital Inputs (4.3. | 3)                                                  |                         |      |          |       |
| Vih                  |                                                     | 0.6                     |      |          | Vdd   |
| Vil                  |                                                     |                         |      | 0.3      | Vdd   |
| R                    | Software-selectable pull-ups to 3.3 V (see note 23) | 35                      |      | 120      | kΩ    |
| A/D Inputs (4.3.4)   |                                                     |                         |      |          |       |
| n                    | resolution (note 24)                                |                         | 8    | 10       | bit   |
| Rin                  | input impedance (note 25)                           |                         | 43.2 |          | kΩ    |
| Vin                  | A/D input voltage range (note 25)                   | 0                       |      | 10.8     | V     |
| Vref                 | A/D reference voltage (note 26)                     |                         | 2.5  |          | V     |
| Ivref                | Current drain from ref voltage                      |                         |      | 100      | uA    |
| I (Vref)             | J10.43                                              |                         |      | 100      | μA    |
| I2C Bus (4.5.5, no   | te 27)                                              |                         |      |          |       |
|                      | Bus clock                                           |                         | 50   |          | kHz   |
|                      | input buffer size                                   |                         |      | 32       | byte  |
|                      | packet size                                         |                         |      | 32       | byte  |
| Vi/o                 | I/O voltages                                        | see digital I/Os, above |      |          | V     |
| Rbus                 | pull-up on SDA, SCK                                 |                         | 4.7  |          | kΩ    |
| Vbus                 |                                                     |                         | 3.3  |          | V     |

Notes:

- 21. Row and column I/Os have series resistance and overvoltage protection to ground. The series resistance limits the dc current that any one pin can source or sink.
- 22. I<sup>2</sup>C outputs PC6 and PC7 are directly connected to I/O controller without external protection.
- 23. Control pull-up resistors by writing to bits of IO port when the port is configured as a digital input (bit mask 1=enable, 0=disable).

- 24. Digital noise on the board may degrade analog performance under some conditions.
- 25. ADSmartIO A/D inputs include an input voltage divider of 33.2k series with 10k to ground.
- 26. Vref is usually turned off when the system is in Sleep mode (section 5.2.2).
- 27. Specifications based on ADSmartIO release 1010 rev 2 (ADS release #700114-10102)

### 6.2.7 System Controller

A Xilinx XCR3256XL CPLD on the AGX provides system logic for chip selects, power management, interrupt decoding, clock generation, PCMCIA logic and other system control functions. It is programmed at the factory using the JTAG interface (3.4.14).

#### Absolute Maximum Ratings

Input voltage, digital I/O pins .....-0.5 to 5.5 V [tbd]

Output current, continuous,

digital I/O pins .....-100 to 100 mA [tbd]

| Symbol          | Parameter      | Min | Тур. | Max | Units |
|-----------------|----------------|-----|------|-----|-------|
| Vdd             | Supply voltage |     | 3.3  |     | V     |
| Digital Outputs |                |     |      |     |       |
| Vol             | [tbd]          | 0   |      | 0.4 | V     |
| Voh             |                | 2.4 |      |     | V     |
| Digital Inputs  | ·              |     |      |     |       |
| Vil             | [tbd]          | 0   |      | 0.8 | V     |
| Vih             |                | 2.0 |      | 3.5 | V     |

### 6.2.8 Serial Ports

The AGX supports several serial port as described in section 4.5.1.

Serial ports 1 through 3 are controlled by the XScale processor. Serial ports A through D are controlled by an Exar ST16C554 or compatible quad UART.

EIA-232 signals are generated using charge pump devices (e.g. Sipex SP3232 and SP3243). Signals 422/485/J1708 are buffered with the Maxim MAX491. IrDA signals from the XScale are converted to IrDA using a Vishay TFDU6100 infrared transceiver.

| Symbol       | Parameter                           | Min | Тур. | Max | Units |
|--------------|-------------------------------------|-----|------|-----|-------|
|              | Logic voltage, CMOS serial ports    |     | 3.3  |     | V     |
| IrDA (4.5.1) |                                     |     |      |     |       |
| VccRxIrda    | Receiver voltage                    |     | 3.3  |     | V     |
| RvccRxIrda   | Reciever power series resistance    |     | 10   |     | Ω     |
| VccTxIrda    | Transmitter voltage                 |     | 3.3  |     | V     |
| RvccTxIrda   | Transmitter power series resistance |     | 3.6  |     | Ω     |
| PtxIrda      | Transmitter power                   |     | 330  | 630 | mA    |

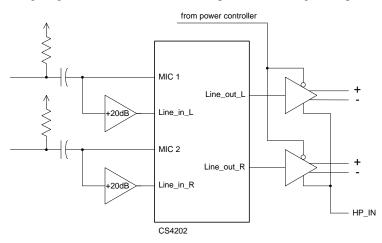
#### 6.2.9 USB

The AGX supports USB operation as described in section 4.5.2.

#### 6.2.10 Ethernet

The AGX uses an SMSC LAN91C111 10/100 BT Ethernet controller. The MAC (Media Access Control) address is stored in a serial EPROM connected to the controller.

### 6.2.11 CAN Bus


The AGX uses the SJA1000T CAN controller with the Intel 82C251 CAN transceiver for its CAN bus capabilities.

#### 6.2.12 Audio

For its audio sub-system the AGX uses the Crystal CS4202, an AC'97 stereo codec with dual audio input and output channels. The AGX adds an output power amplifier (National LM4863LQ) and a microphone pre-amp with power for electret microphones.

The output amplifier supports differential and single-ended modes. When the HP\_IN signal is greater than V(HP\_IN), the amplifier is in single-ended mode; when lower, it is in differential mode.

The following diagram illustrates the relationship of the AGX signal amplifiers to the codec:



The AGX microphone circuitry can be factory configured to support "line in" inputs (1 Vrms with no electret pull-ups) and different input gain and filtering. If a special configuration needed for your project, consult ADS Sales with information about your requirements.

#### **Absolute Maximum Ratings**

Vin\_mic.....5 Vdc

| Symbol       | Parameter                           | Min | Тур. | Max  | Units             |
|--------------|-------------------------------------|-----|------|------|-------------------|
| DVdd         | codec digital supply voltage        |     | 3.3  |      | V                 |
| Avdd         | codec analog supply voltage         |     | 5.0  |      | V                 |
| fso          | sample rate, output                 |     | 48   |      | kHz               |
| fsi          | sample rate, input (note 28)        | 8   |      | 44.1 | kHz               |
| Audio Input  |                                     |     |      |      |                   |
| Vin_mic      | signal input voltage                |     | 100  |      | mV <sub>rms</sub> |
| Gain_mic     | pre-amp gain                        |     | 20   |      | dB                |
| fo_mic       | pre-amp low-pass cutoff (note 29)   |     | 3.4  |      | kHz               |
| Rin_mic      | input impedance                     |     | 12.5 |      | kΩ                |
| Cin_mic      | DC blocking capacitor               |     | 1    |      | μF                |
| Vmicpwr      | microphone power (MIC_L/R+)         |     | 5    |      | V                 |
| Rmicpwr      | microphone power, series resistance |     |      | 3.2  | kΩ                |
| Audio Output |                                     |     |      |      |                   |
| RI           | speaker load                        | 4   | 8    |      | Ω                 |
| Vout         | Zspkr=4Ω, differential mode         |     |      | 3.7  | V <sub>rms</sub>  |
| Vdc          | DC bias, differential mode          |     | 0.5  |      | Avdd              |
| Pspkr        | output power, ea. channel (note 30) |     |      |      |                   |

| Symbol  | Parameter                                | Min | Тур. | Max  | Units |
|---------|------------------------------------------|-----|------|------|-------|
|         | differential, THD+N 1%, RI 4 $\Omega$    |     | 1.0  | 2.2  | W     |
|         | differential, THD+N 10%, RI 4Ω           |     | 1.0  | 2.7  | W     |
|         | differential, THD+N 1%, RI 32Ω           |     | 1.0  | 0.34 | W     |
|         | single-ended, THD+N 0.5%, RI 32 $\Omega$ |     | 75   | 85   | mW    |
|         | single-ended, THD+N 1%, RI 8 $\Omega$    |     |      | 340  | mW    |
|         | single-ended, THD+N 10%, RI 8 $\Omega$   |     |      | 440  | mW    |
| R HP_IN | pull-up to Vcc                           |     |      | 100  | kΩ    |
| V HP_IN | threshold voltage                        |     | 4    |      | V     |

Notes:

- 28. The output sample rate is fixed, but the input sample rate can be set to 8, 11.025, 22.05 or 44.1 kHz.
- 29. Pre-amp anti-aliasing filter rolls off at 3dB/octave (first-order filter)
- 30. Typical values are guaranteed to National Semiconductor's AOQL (Average Outgoing Quality Level) Operating above typical values for a sustained period of time may result in thermal shutdown of the amplifier.

### 6.2.13 PXA255 Processor

The XScale PXA255 core can change system voltage Vddi (6.2.2) dynamically to achieve lower power consumption at high clock rates. It uses voltage Vddx to power its interface I/Os. The EIOn digital I/Os include series resistance and ESD protection.

Serial ports configured for 3.3 V CMOS operation run directly to the processor (section 4.5.1). These lines should be treated as digital I/Os and protected for over-current and over-voltage accordingly.

#### **Absolute Maximum Ratings**

| Symbol          | Parameter                   | Min | Тур. | Max  | Units            |  |  |
|-----------------|-----------------------------|-----|------|------|------------------|--|--|
| Digital Outputs |                             |     |      |      |                  |  |  |
| Vol             |                             |     | 0    |      | V <sub>ddx</sub> |  |  |
| Voh             |                             |     | 1.0  |      | V <sub>ddx</sub> |  |  |
| lo              |                             | -2  |      | 2    | mA               |  |  |
| Digital Inputs  |                             |     |      |      |                  |  |  |
| Vil             |                             |     |      | 0.2  | V <sub>ddx</sub> |  |  |
| Vih             |                             | 0.8 |      |      | V <sub>ddx</sub> |  |  |
| I2C Bus (4.5.5) |                             |     |      |      |                  |  |  |
|                 | bus clock (note 31)         | 100 |      | 400  | kHz              |  |  |
|                 | buffer size                 |     |      | 1    | byte             |  |  |
| Rbus            | pull-up on SDA, SCK         |     | 4.7  | 4.99 | kΩ               |  |  |
| Vbus            |                             |     | 3.3  |      | V                |  |  |
| Rseries         | resistance to ADSmartIO bus |     | 22   |      | Ω                |  |  |

Notes:

31. The PXA255 supports "standard" and "fast" I2C speeds of 100 and 400 kHz.

### 6.2.14 Crystal Frequencies

Agencies certifying the AGX for compliance for radio-frequency emissions typically need to know the frequencies of onboard oscillators. The following table lists the frequencies of all crystals on the AGX.

| Crystal | Device                    | Тур.   | Units |
|---------|---------------------------|--------|-------|
| X1      | ADSmartIO microcontroller | 3.6864 | MHz   |
| X2      | System clock generator    | 16.000 | MHz   |
| X3      | XScale RTC                | 32.768 | kHz   |
| X4      | RTC                       | 32.768 | kHz   |
| X5      | XScale core               | 3.6864 | MHz   |
| X6      | USB clock                 | 12.000 | MHz   |
| X7      | Quad UART                 | 3.6864 | MHz   |

# 6.2.15 PCMCIA and CompactFlash Controller

AGX PCMCIA and CompactFlash control logic is managed by a Xilinx XCR3032XL CPLD with firmware developed by ADS. The signals run through buffers before going to the PCMCIA (J10, 3.4.8) and CompactFlash (J4, 3.4.4).headers.

On the AGX, the CompactFlash (CF) port can be used as a digital expansion bus. See section 4.1.5 for details.

#### **Absolute Maximum Ratings**

Input voltage, port I/O pins ......6.5 V

| Symbol                 | Parameter                                                          | Min | Тур. | Max | Units |
|------------------------|--------------------------------------------------------------------|-----|------|-----|-------|
| V <sub>ddx</sub>       | PCMCIA/CF buffer power                                             |     | 3.3  |     | V     |
| V <sub>ccCardA,B</sub> | PCMCIA and CF supply voltage<br>(note 32)                          | 3.3 | 5.0  | 5.0 | V     |
| I 3.3V                 | 3.3 V socket power                                                 |     |      | 2   | W     |
| I 5V                   | 5 V socket power                                                   |     |      | 2   | W     |
| Rp pcmcia              | Card detect (1 & 2) and voltage sense (VS1 & 2) pull-ups (note 33) |     | 100  |     | kΩ    |
| Vp pcmcia              | Card detect and voltage sense pull-<br>up voltage                  |     | 3.3  |     | V     |
| Digital Outputs        |                                                                    |     |      |     |       |
| Vol                    |                                                                    |     |      | 0.2 | V     |
| Voh                    |                                                                    | 3.1 |      |     | V     |
| Digital Inputs         |                                                                    |     |      |     |       |
| Vil                    | Vddx=3.3 V                                                         |     |      | 0.8 | V     |
| Vih                    | Vddx=3.3 V                                                         | 2.0 |      | 5.5 | V     |

Notes:

- 32. The PCMCIA port supply voltage is selected programmatically.
- Each card inserted in a PCMCIA or CF slot can drain up to 0.4 mW when the system is in Sleep mode ( 4 \* (Vddx<sup>2</sup>/Rpcmcia) ).

(This page intentionally blank)

# 7 Board Revision History

### 7.1 Identifying the board revision

The product revision number of the AGX is etched on the underside of the printed circuit board. That number is 170115-4000x, where "x" is the board revision.

# 7.2 Revision History

### 7.2.1 Revision 2

Initial release. The design was based on the SA-1110 Advanced Graphics Client product.

(This page intentionally blank)