

AEL Embedded Linux

Technical Manual

AEL Embedded Linux Technical Manual

Definitions
Arcom is the trading name for Arcom Control Systems Inc.

Disclaimer
The information in this manual has been carefully checked and is believed to be accurate. Arcom assumes no responsibility
for any infringements of patents or other rights of third parties, which may result from its use.
Arcom assumes no responsibility for any inaccuracies that may be contained in this document. Arcom makes no commitment
to update or keep current the information contained in this manual.
Arcom reserves the right to make improvements to this document and/or product at any time and without notice.

Warranty

This product is supplied with a 3 year limited warranty. The product warranty covers failure of any Arcom manufactured product
caused by manufacturing defects. The warranty on all third party manufactured products utilized by Arcom is limited to 1 year.
Arcom will make all reasonable effort to repair the product or replace it with an identical variant. Arcom reserves the right to
replace the returned product with an alternative variant or an equivalent fit, form and functional product. Delivery charges will
apply to all returned products. Please check www.arcom.com/support for information about Product Return Forms.

Trademarks
Linux is a registered trademark of Linus Torvalds.
Red Hat is a registered trademark of Red Hat, Inc.
ARM and StrongARM are registered trademarks of ARM, Ltd.
Intel and XScale are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.
X Window System is a trademark of X Consortium Inc.
All other trademarks and copyrights referred to are the property of their respective owners.
This product includes software developed by the University of California, Berkeley and its contributors.

Revision history
Manual PCB Date Comments
Issue A
Issue B
Issue C
Issue D
Issue E
Issue F
Issue G
Issue H
Issue I

 12th July 2002
8th July 2003
3rd February 2004
14th June 2004
3rd August 2004
4th May 2005
22nd March 2006
15th September 2006
16th October 2007

Combined Quickstart and Technical Manual.
Minor editorial changes
Major changes for V3I5 Development Kit.
Minor changes for V316 Development Kit.
Major updates and layout changes.
Updates for V4I1.
Updates for V4I2.
Updates for V4I2b.
Minor updates.

© 2007 Arcom Control Systems Inc.
For contact details, see page 65.

http://www.arcom.com/support
http://www.eurotech.com/

AEL Embedded Linux Technical Manual Contents

© 2007 Arcom Issue I 3

Contents
Introduction ..5

Licensing AEL Embedded Linux components..6
Handling your board safely ..6

About this manual ..7
Related documents ..7
Specific terms...8
Conventions ...8

Development Kit CD contents..10
File system layout ..11

Journaling Flash file system...11
RAM file system...12

Configuring AEL Embedded Linux ...13
Default passwords ...13
Keyboard mapping...13
Serial port configuration ...13
System startup scripts..16
Making an application run automatically at boot ..17
Network configuration ..17
Wireless network configuration ..20
Configuring and loading kernel modules..21
System recovery and single user mode...22
Calibrating touchscreens ...23

Secure Shell (SSH)..24
Introduction to SSH..24
Using SSH commands...25
Public key authentication methods ..27
Further information about SSH ..28

Package management ...29
Removing packages ..29
Adding packages ...29

The X Window System...30
Window manager ...30
Using a touchscreen ..30

Developing software for AEL Embedded Linux..31
Host system requirements ...31
Installing the AEL Embedded Linux host environment...34
Installing additional packages into the host environment...35
Obtaining help..36
Cross compiling applications and libraries...36
Cross compilation example..40
Debugging applications on the target ..42
Compiling a kernel ...44
Common embedded software development tasks...47

AEL Embedded Linux Technical Manual Contents

© 2007 Arcom Issue I 4

RedBoot ...55
The RedBoot command line ..55
Configuring and using RedBoot ...55
Loading images into RAM..57
Managing images in Flash ...60
Executing an image ...63

Appendix A - Contacting Arcom ...65
Appendix B - Software sources..66
Appendix C - Reference information..67
Appendix D - Acronyms and abbreviations ..68
Index ..69

AEL Embedded Linux Technical Manual Introduction

© 2007 Arcom Issue I 5

Introduction
AEL Embedded Linux is a standard Linux distribution produced by Arcom. It is
optimized to fit within the on-board Flash of Arcom’s range of Single Board Computers
(SBCs). AEL Embedded Linux is based on the standard Linux kernel and user space
tools.

Arcom provide free first line technical support for this product.
See Appendix A - Contacting Arcom, page 65.

The minimum target footprint for AEL Embedded Linux is a system with 16MB RAM and
8MB Flash memory. Additional RAM and/or Flash enables greater functionality.

The AEL Embedded Linux distribution consists of:

• A standard Linux kernel, built to support Flash memory access.
• A number of Linux device drivers (some board-specific).
• System and application libraries.
• User space applications and utilities.

Some major components are:

• THTTPD web server.
• Bourne Again Shell (bash).
• OpenSSH (secure telnet and FTP replacement).
• XFree86/TinyX (on targets where graphics hardware is available).
• Many other standard Linux utilities.

You may well want to add specific functionalities to the base system. You can do this by
adding libraries and/or applications compiled on a host Linux system. We supply all
source code for the kernel, libraries and applications in the AEL Embedded Linux
distribution. This means you can completely rebuild the environment from scratch, if
required.

AEL Embedded Linux is implemented in a way that enables it to support installation on
space-constrained devices, such as the on-board Flash.

AEL Embedded Linux is not intended to be used to build applications. A host Linux
system is required to design and build applications before downloading them to the
target system using FTP or SCP.

AEL Embedded Linux Technical Manual Introduction

© 2007 Arcom Issue I 6

If you want to develop on the target board, it may be possible to install a host operating
system (such as Red Hat Linux) with the addition of a hard disk drive. To do this, the
following conditions must be satisfied:

• The target hardware must support the addition of a hard disk. For this information,
see the Technical and Quickstart Manuals for your board.

• A suitable Linux distribution must be available with support for the target board’s
processor architecture. It is not possible to develop applications under AEL
Embedded Linux directly.

Licensing AEL Embedded Linux components
The AEL Embedded Linux Development Kit contains components licensed by different
sources. Many of these are Open Source licenses (see www.opensource.org). If you
further distribute these modules you may, under certain circumstances, be required to
release source code for any modifications you have made.

Please consult Appendix A - Contacting Arcom, page 65, and the relevant source
packages to ensure you are familiar with the licensing requirements of any packages
that you modify. Copies of the more widespread licenses are included on the
Development Kit CD, in the folder /licenses.

Handling your board safely

Anti-static handling
This Development Kit contains CMOS devices. These could be damaged in the event of
static electricity being discharged through them. Observe anti-static precautions at all
times when handling circuit boards. This includes storing boards in appropriate anti-
static packaging and wearing a wrist strap when handling them.

Packaging
Should a board need to be returned to Arcom, please ensure that it is adequately
packed, preferably in the original packing material.

http://www.opensource.org/

AEL Embedded Linux Technical Manual About this manual

© 2007 Arcom Issue I 7

About this manual
This manual provides detailed information about the AEL Embedded Linux distribution.
It explains, with examples, how to use the key technologies supplied in this distribution.

AEL Embedded Linux is available on a number of different Arcom boards, each with
different devices and hardware capabilities. Certain sections of this manual may
therefore not apply to particular boards. For example, boards without display hardware
do not support the X Window System, so that section can be ignored.

Related documents
In addition to this manual, you can obtain useful information from a variety of sources.
These include:

• An index.html file, on the Development Kit CD, which may be opened with any web
browser. This contains links to many of the documents mentioned in this section and
throughout this manual.

• The Linux RUTE manual. This contains a general overview of how to use a Linux
system. You can find it on the Development Kit CD, in the folder /manuals/.

• The Linux online help system, known as ‘man pages’. The pages in this help system
are referred to from time to time, in the format ‘name (section)’, for example
‘interfaces (5) man page’. You can view this help on the host system (not on the
target) by typing man name, or man section name. For the above example,
therefore, you might type man interfaces, or man 5 interfaces. Include the section
if possible, because in some cases a page with the same name may exist in a
different section.

• The selection of Linux ‘how to’ documents covering common topics on the
Development Kit CD, in the folder /manuals/HOWTO/. The full set of ‘how to’
documents is available at www.tldp.org.

• The Arcom Quickstart and Technical Manuals, which are also in the folder /manuals/
on the Development Kit CD.

• The websites to which you can find links in Appendix B - Software sources, page
66.

http://www.tldp.org/

AEL Embedded Linux Technical Manual About this manual

© 2007 Arcom Issue I 8

Specific terms
This manual uses a number of terms with specific meanings. These are explained in the
following table:

Term Explanation

Host system The computer system hosting the development
environment on which all compiling etc. is done. This is
typically a normal desktop system running a standard
Linux distribution.

Target system The system for which you’re targeting development, i.e.
the Arcom board that you’re developing the application
to run on.

Target architecture The architecture of the target as understood by the
packaging system and most of the build tools. This
covers not only CPU architectures (see below) but also
configuration differences (e.g. endianness). Currently,
this is one of: arm, armbe, or i386.

Target CPU architecture The architecture of the CPU of the target. Currently, this
is one of: arm or i386.

Target system type A hyphenated combination of the target architecture
(see above) and target operating system. This is used
by many build tools. Currently, this is one of: arm-linux,
armbe-linux, or i386-linux.

Conventions

Symbols
The following symbols are used in this guide:

Symbol Explanation

Note - information that requires your attention.

Tip - a handy hint that may provide a useful
alternative or save time.

Caution – proceeding with a course of action may
damage your equipment or result in loss of data.

AEL Embedded Linux Technical Manual About this manual

© 2007 Arcom Issue I 9

Typographical conventions
This manual contains examples of commands that you can enter. These are shown as
follows:

$ make install DESTDIR=/tmp/target-install

The initial symbol ($ in this case) indicates the prompt that the command is for and
should not be typed.

The prompts used are explained in the following table:

Prompt Explanation
$ Linux (bash shell) as a regular user.

Linux (bash shell) as root.

RedBoot> RedBoot command line.

(gdb) GNU DeBugger prompt.

Different fonts are used throughout the manual to identify different types of information,
as follows:

Font Explanation
Italics Parts of a command that should be substituted

with appropriate values.

Bold Information that you enter yourself.
Screen text Information that is displayed on screen.

Long commands that don't fit on one line, and must therefore be split across multiple
lines, are indicated by a backslash (\) at the end of the line.

AEL Embedded Linux Technical Manual Development Kit CD contents

© 2007 Arcom Issue I 10

Development Kit CD contents
The Development Kit CD contains the following top-level folders:

Folder Contents

packages AEL Embedded Linux source and binaries.

examples Various examples.

host Host environment.

licenses Common licenses used by the software included in the
Development Kit.

manuals Arcom and third party documentation.

reference Board reference documentation.

images Binary images of complete system installs, boot loaders,
etc.

AEL Embedded Linux Technical Manual File system layout

© 2007 Arcom Issue I 11

File system layout
The exact layout of the file system on an AEL Embedded Linux system depends on the
target board. In general, the Flash includes one or more smaller partitions containing
the boot loader, along with one large partition that covers the rest of the device and
contains the root (/) file system. The partition sizes are determined from RedBoot's
Flash Image System (FIS) and can be changed from RedBoot's command line.

In addition to the Flash file systems, a RAM-based file system is mounted on /var/tmp.

Journaling Flash file system
The Flash is formatted using the Journaling Flash File System (JFFS2). This places a
compressed file system onto the Flash transparently to the user. Key features of JFFS2
include:

• Direct targeting of Flash devices.
• Robustness.
• Consistency across power failure.
• No integrity scan (fsck) is required at boot time after normal or abnormal shutdown.
• Explicit wear levelling.
• Transparent compression.

Flash partitions appear as pseudo-block devices with major number 31, which can be
mounted using JFFS2, as follows:
mount –t jffs2 /dev/mtdblock1 mount-point

There are a maximum of 16 partitions. These are numbered 0 to 15, and correspond to
the block devices /dev/mtdblock0 through /dev/mtdblock15. In addition, each partition
has a character device, /dev/mtdN. This is used to access advanced features of the
Flash device, such as sector locking.

Any empty (erased) Flash partition can be mounted as a JFFS2 filesystem. No special
utility is required to format the device. Simply erase the whole of the partition using
eraseall –j, and mount as normal. The –j option causes an empty JFFS2 filesystem to
be created rather than completely erasing the flash device. Using this option can
optimize the first mount.

JFFS2 partitions do not require an integrity check (fsck) to be performed on startup,
after either normal or abnormal shutdown. The supplied /sbin/fsck.jffs2 is a dummy
which always succeeds and is present to simplify the boot scripts.

Although JFFS2 is a journaling file system, this does not preclude the loss of data. The
file system remains in a consistent state across power failure and is always mountable.
However, if the board is powered down during a write, the incomplete write is rolled-
back on the next boot. Any completed writes are not affected.

For more information about JFFS2, see sources.redhat.com/jffs2.

http://sources.redhat.com/jffs2/

AEL Embedded Linux Technical Manual File system layout

© 2007 Arcom Issue I 12

RAM file system
AEL Embedded Linux systems make use of a RAM-based file system (tmpfs) mounted
on /var/tmp. The contents of this file system are not preserved through reboot. The
RAM file system grows and shrinks to accommodate only the size of the files it
contains. This means there is very little overhead.

To prevent the RAM file system using the whole of RAM, the file system is constrained
to use a maximum of 4MB of memory. You can change this by editing /etc/fstab and
changing the size= parameter for /var/tmp.

AEL Embedded Linux Technical Manual Configuring AEL Embedded Linux

© 2007 Arcom Issue I 13

Configuring AEL Embedded Linux
Default passwords

When AEL Embedded Linux is supplied, it is configured with two users, the super user
(known as root) and a regular user called arcom. The default password for both
accounts is arcom.

To change a user’s password, login as that user and run the passwd command.

To add a user, login as root and run the adduser command, for example:
adduser abc

For security reasons, it is essential that you change the passwords for any
deployed system.

Keyboard mapping
When supplied, AEL Embedded Linux is configured for a US-style keyboard. This
configuration is controlled by the file /etc/console/keymap.gz, which is a symbolic link to
us.map.gz in the folder /usr/lib/kbd/keymaps/i386/qwerty/.

If you want to use another keyboard layout, change this link to point to another file. For
example, for a UK keyboard:
ln –sf /usr/lib/kbd/keymaps/i386/qwerty/uk.map.gz /etc/console/keymap.gz

Once you have configured the new keymap, you may reload it with:
/etc/init.d/loadkeys start

Additional keyboard maps can be found in the kbd source package on the CD.

Serial port configuration
The Linux kernel that is shipped as standard with AEL Embedded Linux already
contains driver support for the standard serial 16550 UARTs (such as those found on
many of Arcom's processor boards), as well as the AIM104-COM4 peripheral board and
many third party serial boards. A standard AEL Embedded Linux kernel can support
many serial ports (typically up to 64) but only allocates a small number for the on-board
UARTs.

Serial port naming
Arcom hardware uses the standard PC style serial port naming convention, i.e. they are
named COM1, COM2 etc. However, Linux uses the names ttyS0, ttyS1, etc. COM1
corresponds to Linux serial port ttyS0, COM2 corresponds to ttyS1, and so on.

AEL Embedded Linux Technical Manual Configuring AEL Embedded Linux

© 2007 Arcom Issue I 14

Configuring serial ports using setserial
You can configure serial ports using the setserial tool. This section provides a brief
overview of the setserial tool. For more detailed information, refer to the setserial(8)
man page on your host system, or see setserial.sourceforge.net/setserial-man.html.

You can view the current configuration of a serial port by passing the device to
setserial. For example, use the following command to view the configuration of COM1,
which is /dev/ttyS0:
setserial /dev/ttyS0

You can obtain more detailed information by passing the –a flag, as follows:
setserial –a /dev/ttyS0

Passing additional options to setserial configures the serial port. The following table
outlines the common options:

Option Description
port port_number Sets the I/O port used by this serial port.
irq irq_number Sets the IRQ used by this serial port.
uart uart_type Sets the UART type. Permitted types are none, 8250, 16450,

16550, 16550A, 16650, 16650V2, 16654, 16750, 16850, 16950
and 16954.

autoconfig Causes the kernel to attempt to automatically detect the UART
type. If the auto_irq option has been given, it also attempts to
determine the IRQ.
This option must be given after the port and irq (or auto_irq)
options.

auto_irq Causes the kernel to attempt to automatically determine the IRQ
to use when performing automatic configuration.
It is much safer, however, to explicitly configure the IRQ using the
irq option. You can disable this option by prefixing it with a
carat (^).

baud_base Sets the base baud rate. This is the clock frequency divided by
16.
The default base baud rate is normally either 115200 or the
maximum baud base the port is capable of. In some cases,
however, the default is 0. If so, you cannot set any other options
until you have set a suitable baud_base. You can do this by
passing baud_base as the first option.

Further options are described in the setserial (8) man page.

http://setserial.sourceforge.net/setserial-man.html

AEL Embedded Linux Technical Manual Configuring AEL Embedded Linux

© 2007 Arcom Issue I 15

Configuring a port on an additional serial board
You may have added further serial ports to your processor, for example using an Arcom
AIM104-COM4 or third party serial board. If so, you can use the above commands to
configure any of the unused serial ports. Simply choose a free serial port /dev/ttySn and
configure it as described above, in accordance with the settings you have configured on
the peripheral board itself. Consult the peripheral board's documentation for details.

Automatically loading the serial port configuration on boot
At boot time the contents of the file /etc/serial.conf are parsed and the serial ports are
configured accordingly. Each line of the file starts with the name of a device and is
followed by one or more options that are passed to setserial.

For example, to set the irq of COM1 to 7, add the following to /etc/serial.conf:
/dev/ttyS0 irq 7

You can also generate a configuration line using the –G switch to setserial to generate
an entry representing the current state of a port. For example, the following command
appends an entry for /dev/ttyS1 to the configuration file:
setserial –G /dev/ttyS1 >> /etc/serial.conf

Removing login session from ttyS0
The default installation of AEL Embedded Linux is configured to run a login session on
ttyS0 (COM1). This can cause problems if your application wants to use ttyS0, as the
two conflict. This often manifests as the serial port changing baud rate at unusual times.

Before removing all login sessions, either:
• Ensure you have some other way of logging into the system, such as via

SSH (with a known IP address) or a local console.
-or-
• Be prepared to boot to single user mode, as described on page 22.

To remove the serial login session, edit /etc/inittab and comment out the following line
by placing a # character at the start:

T0:23:respawn:/sbin/getty -L ttyS0 115200 vt100

Then signal init to reload its configuration by entering:
telinit q

If you wish you can add another login session on a different serial port by adding lines
as follows:
Tn:23:respawn:/sbin/getty –L ttySn 115200 vt100
(Where n is the number of the serial port to use.)

The Tn identifier must be unique within the entire file. Using T and the serial
port number accomplishes this.

AEL Embedded Linux Technical Manual Configuring AEL Embedded Linux

© 2007 Arcom Issue I 16

System startup scripts
AEL Embedded Linux uses a System V type init process. Scripts are placed in
/etc/init.d/, with symbolic links for each runlevel in etc/rc?.d/.

? may be any of the following characters:

Character Function Description

S Startup Run at boot time prior to running the scripts for the
desired runlevel 1-5.

0 Halt Run on system shutdown.

1 Single Run on entering single user mode.

2 Normal Serial login only.

3 Normal Serial and Display login.

4 Normal Display login only.

5 Normal Display login only.

6 Reboot Run before rebooting.

The default runlevel is level 3 for targets with graphics hardware, and level 2 for
others.

When the runlevel changes, the K* scripts in the /etc/rc?.d/ folder corresponding to the
new runlevel are executed in alphanumerical order (with an argument of stop). The S*
scripts in the same folder are then executed in alphanumerical order (with an argument
of start).

You can start or stop a service manually by calling the script in /etc/init.d with a
parameter of either start, stop or restart.

Calling the script with no parameters normally displays a complete list of the
possible actions.

On some boards, the framebuffer driver is built as a module, and so the display
login is not displayed until the framebuffer driver has been loaded. Refer to the
QuickStart manual for your hardware. In addition, the framebuffer console driver
fbcon may need to be loaded. See Configuring and loading kernel modules on
page 21 for information about loading kernel modules and causing them to load
automatically on boot.

AEL Embedded Linux Technical Manual Configuring AEL Embedded Linux

© 2007 Arcom Issue I 17

Making an application run automatically at boot
If you want an application to run automatically at boot, follow these steps:

1 Write a script that runs your application. For example, you may create a script
called ‘someapp’.

2 Put the script in the following folder:
/etc/init.d

3 Make the script executable by entering the following command (replacing
‘someapp’ with the name you’ve given your script):
chmod +x /etc/init.d/someapp

4 Make a symbolic link in /etc/rcX.d that points to the script in /etc/init.d. For the
‘someapp’ example, you might therefore enter:
ln -s /etc/init.d/someapp /etc/rcX.d/S99someapp
(Where X is the runlevel number.)
For example, at runlevel 3, you would enter:
ln –s /etc/init.d/someapp /etc/rc3.d/S99someapp

Using 99 ensures that your application starts after all other services.

Network configuration
You can view the current Ethernet configuration by running ifconfig, and the current
default gateway with route.

IP address configuration
In the default install of AEL Embedded Linux, the network device is configured to obtain
an IP address automatically via DHCP (Dynamic Host Configuration Protocol). If you
are not running a DHCP server on your network, or you want to force a static IP
address, you can reconfigure the device by editing the file /etc/network/interfaces. The
format of this file is described in the interfaces(5) man page.

Each interface is defined by a line starting with the iface keyword. The syntax is:
iface NAME FAMILY METHOD

AEL Embedded Linux Technical Manual Configuring AEL Embedded Linux

© 2007 Arcom Issue I 18

The parameters you can specify are explained in the following table:

Parameter Description

NAME The name of the interface (for example eth0).

The name given to an interface in Linux is the device type with
a numerical suffix. Thus, the first Ethernet device is known as
eth0, while the second (if present) is eth1. The first wireless
network device is called wlan0.

FAMILY The address family for the interface (normally inet for IPV4).

METHOD The method to be used to obtain an address for this interface.
The available methods include loopback, static, manual and
dhcp.

After each iface line there may be one or more lines that specify further options. In
general, only interfaces that use the static method require additional options.

The following options are valid for any interface:

Option Description

up COMMAND Run command after bringing the interface up.

pre-up COMMAND Run command before bringing the interface up.

down COMMAND Run command before taking the interface down.

post-down COMMAND Run command after taking the interface down.

For each of the above options there also exists a folder, as follows:
/etc/network/if-<option>.d/

The scripts in each of these are run after the corresponding option, if any, has been run.
All of the commands are called with several environment variables set. These variables
are described in the following table:

Option Description

IFACE The name of the physical interface.

ADDRFAM The address family, for example inet.

METHOD The configuration method, for example static.

MODE The mode, which may be either start or stop.

AEL Embedded Linux Technical Manual Configuring AEL Embedded Linux

© 2007 Arcom Issue I 19

Statically configuring an interface
The following options are valid for an IPV4 interface that is statically configured, using
the static method:

Option Description

address ADDRESS Address (dotted quad). Required.

netmask NETMASK Netmask (dotted quad). Required.

broadcast BROADCAST_ADDRESS Broadcast address (dotted quad).

network NETWORK_ADDRESS Network address (dotted quad).

gateway ADDRESS Default gateway (dotted quad).

For example, to configure eth0 to use the static address 192.168.1.4/24 with a default
gateway of 192.168.1.1, enter the following in /etc/network/interfaces:
iface eth0 inet static
 address 192.168.1.4
 netmask 255.255.255.0
 gateway 192.168.1.1

Manually configuring an interface
The manual method causes no configuration. Such interfaces can be configured using
the up-* and down-* scripts.

Configuring an interface using DHCP
The DHCP method uses an installed DHCP client to obtain configuration information.
The hostname HOSTNAME option, which requests a specific hostname from the
server, is valid for an IPV4 interface configured using DHCP.

Automatically bringing up an interface on boot
A line in /etc/network/interfaces beginning with the auto keyword specifies interfaces
that should be brought up on boot. For example, to bring up the loopback (lo) and first
Ethernet (eth0) interfaces, include the following:
auto lo eth0

You can include as many auto lines as you like.

Hostname
The default hostname for a board is the board type. To change the hostname, edit the
file /etc/hostname.

You can use the command hostname to view the current hostname.

AEL Embedded Linux Technical Manual Configuring AEL Embedded Linux

© 2007 Arcom Issue I 20

Wireless network configuration
Wireless support under AEL Embedded Linux has been tested using a Linksys Wireless
CompactFlash Card (model WCF12). This card is based on the popular PRISM chip set
and any PRISM2, 2.5 or 3 based card should work. Cards based on other chip sets
may or may not work.

This section explains how to configure wireless networking (WLAN) to access a network
via a wireless access point under AEL Embedded Linux. For further details, see the
Wireless Tools for Linux website at
www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html and the Host AP (the card
drivers) website at hostap.epitest.fi/.

Configuring the wireless network device
In order to connect to a wireless network, you must obtain the following settings from
your network administrator:
• ESSID network identifier, for example "ABC-Wireless-Network".
• Radio channel to use (1-14, depending on local legislation and access point

configuration).
• Shared keys used by your access point, if your access point is configured to use

Wired Equivalent Privacy (WEP) encryption.

Configuration is carried out with extra options in /etc/network/interfaces in the
appropriate iface stanza for the WLAN device (usually wlan0), as described in the
previous section. The more common options are listed in the table below.

Option Description
wireless_mode MODE Sets the operating mode of the device. Common values for

MODE are:

• Adhoc. A network composed of only one cell and
without an access point.

• Managed. Node connects to a network composed of
many access points.

wireless_essid ESSID Sets the ESSID (network name).

wireless_channel CHAN Specifies the radio channel (1-14) to use.

wireless_enc ENC Sets the level of encryption to use. ENC may be one of:

• Off. No encryption.

• Open. Encryption is used if available but non-encrypted
connections are permitted.

• Restricted. Encryption is required.

wireless_keyN KEY Sets each of the four encryption keys. N is 1-4 and indicates
which of the keys to set. KEY is the encryption key
composed of either 5 bytes (for 64-bit WEP) or 13 bytes (for
128-bit WEP) as hexadecimal digits.

wireless_defaultkey N Uses key N (1-4) as the default key.

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
http://hostap.epitest.fi/

AEL Embedded Linux Technical Manual Configuring AEL Embedded Linux

© 2007 Arcom Issue I 21

Example configuration
For a node that is connected to the ABC-Wireless-Network using encryption and
obtaining its IP information via DHCP, the following /etc/network/interfaces stanza might
be used:

iface wlan0 inet dhcp
 wireless_mode managed
 wireless_essid ABC-Wireless-Network
 wireless_channel 11
 wireless_enc restricted
 wireless_key1 893248A248B9443FC00D423090

Configuring and loading kernel modules
The Linux kernel supports configuring and loading device drivers as external modules.
This means much of the system need only be resident in RAM when necessary.

Modules are loaded using the modprobe utility, which in turn calls the lower level
insmod utility. You need not normally call either of these utilities manually, since the
kernel automatically calls modprobe when it is asked to open a device for which no
module is currently loaded. The modules that are available via modprobe on the current
system are usually found in the /lib/modules/VERSION/ folder corresponding to the
running kernel.

You can load a module that is installed in the /lib/modules/VERSION/ folder by calling
modprobe with just the module name and without the .o suffix. For example, to load the
ppp_generic.o module, which is installed under /lib/modules/VERSION/, enter the
following command:
modprobe ppp_generic

Modules can be loaded from elsewhere by using the insmod utility directly and giving a
full path to the module. For example, to load the module /tmp/mymodule.o, enter the
following:
insmod /tmp/mymodule.o

You can view the list of currently loaded modules using the command lsmod.

Passing parameters to modules
Many kernel modules can take parameters that allow you to tweak various options. The
available parameters (along with other interesting information) can be listed using the
modinfo utility, as follows:
modinfo ppp_generic
modinfo /tmp/mymodule.o

In many cases, the parameters of a particular module are documented more fully within
the kernel source tree.

AEL Embedded Linux Technical Manual Configuring AEL Embedded Linux

© 2007 Arcom Issue I 22

Configuring modprobe
The modprobe utility (but not the insmod utility) can be configured to automatically
pass parameters when a module is loaded. This is useful when the kernel calls
modprobe for you but you still want to pass parameters to the module.

The modprobe configuration is stored in files in /etc/modprobe.d/. Each entry has the
following format:
options MODULE PARAMTERS

For example, to pass debug=1 whenever loading the ppp_generic module, you can
create a file named /etc/modprobe.d/ppp containing the line:
options ppp_generic debug=1

In addition, modprobe can alias one module name to another. This is useful because
the kernel often calls modprobe with an abstract service name rather than a specific
module. For example, when an attempt is made to access the first Ethernet device, the
kernel calls modprobe to load eth0 (rather than a specific Ethernet driver module). In
such cases eth0 is configured as an alias for the actual Ethernet module. For example
(if smc91x is the driver for eth0 on your system):
alias eth0 smc91x

The full modprobe configuration format is in the modprobe.conf(5) man page.

Automatically loading modules at boot time
In most cases, the kernel loads the correct modules automatically or they are loaded by
the hotplug daemon. In some circumstances, however, this is not the case and it is
desirable to load the module automatically and unconditionally at boot time. You can do
this by listing the modules you wish to be loaded, one per line, in /etc/modules. Each
line must consist of a module name (or alias). This may be followed by one or more
optional parameters.

Removing kernel modules
A kernel module that is not in use by the system can be removed using the modprobe -
r command.

System recovery and single user mode
If a configuration error has been made that prevents you from logging in, you may be
able to boot into single user mode in order to repair the problem. A target board can be
booted into single user mode by adding the word single to the kernel command line.
This is done using the RedBoot exec command described on page 63.

If it is not possible to recover the system using this method, you may have to reload the
default Development Kit image, as described in Updating the entire Flash on page 63.

AEL Embedded Linux Technical Manual Configuring AEL Embedded Linux

© 2007 Arcom Issue I 23

Calibrating touchscreens
Touchscreen support is provided by tslib, which obtains the raw touch events from the
kernel input event subsystem. It also includes modules for calibration, jitter reduction,
and so on.

Tslib requires both the kernel input event interface (provided by the evdev module) and
the correct driver for the touchscreen hardware. /dev/input/eventN devices are assigned
to input devices dynamically and you must determine which device is the touchscreen.

Here is an example:

dmesg | grep input
input: AT Translated Set 2 keyboard as /class/input/input0
input: ImPS/2 Generic Wheel Mouse as /class/input/input1
input: Touchscreen panel as /class/input/input2

The above shows 3 input devices, a keyboard (/dev/input/event0), a mouse
(/dev/input/event1) and the touchscreen (/dev/input/event2).

Calibrating the touchscreen is done using the ts_calibrate utility:
TSLIB_TSDEVICE=/dev/input/event2 ts_calibrate

If you wish to use the touchscreen under the X Window System you must use the same
framebuffer resolution as that used by X.

AEL Embedded Linux Technical Manual Secure Shell (SSH)

© 2007 Arcom Issue I 24

Secure Shell (SSH)
Introduction to SSH

SSH (Secure SHell) is a secure replacement for several common Internet protocols, all
of which have security flaws when used in a non-trusted network environment (primarily
the plaintext exchange of passwords across a non-trusted network). These include, for
example, the Berkley r* tools (rlogin, rsh, rexec), FTP and telnet.

SSH has several advantages over these tools. These include:

• All traffic sent across the network is encrypted using strong encryption. Critically,
this includes passwords.

• Prevention of spoofing and man-in-the-middle attacks using host keys.
• Tunnelling of arbitrary connections through an SSH pipe, known as port forwarding

(in particular X11 forwarding).
• Enhanced authentication methods that improve on normal password-based

mechanisms.

The server also benefits from SSH, especially if it is running a number of services. If
you use port forwarding, otherwise insecure protocols (such as POP) can be encrypted
for secure communication with remote machines. SSH makes it relatively simple to
encrypt different types of communication normally sent insecurely over public networks.
However, SSH is generally designed for use in interactive situations. For non-interactive
use you may find an SSL based solution more useful. For example, you could use the
OpenSSL libraries to implement native SSL support in your application or use the
stunnel utility to create an SSL tunnel between two machines. Both OpenSSL and
stunnel are provided on the Development Kit CD.

For more information about SSH, see www.openssh.org.

A large number of client and server programs can use the SSH protocol, including many
open source and freely available applications. Several different SSH client versions are
available for almost every major operating system in use today.

Please see the documentation for your host system for an explanation of how to install
and deploy OpenSSH on your host system.

Several SSH clients are also available for non-Linux systems. These include Microsoft
Windows platforms, such as:

• PuTTY: A Windows version of the ssh program. This is provided on the Development
Kit CD, in the folder /host/windows, and at
www.chiark.greenend.org.uk/~sgtatham/putty.

• WinSCP: A graphical version of SCP for windows. This is also provided in
/host/windows, and at winscp.net.

http://www.openssh.org/
http://www.chiark.greenend.org.uk/~sgtatham/putty
http://winscp.net/

AEL Embedded Linux Technical Manual Secure Shell (SSH)

© 2007 Arcom Issue I 25

Using SSH commands

The ssh command
The ssh command enables you to remotely login to a machine. For example to login to
the machine ael.example.net, you would enter the following command:
$ ssh ael.example.net

The first time you login to a machine, a message similar to the following (but with a
different fingerprint) is displayed:
The authenticity of host 'ael.example.net (10.2.4.14)' can't be
established.
RSA key fingerprint is
e0:79:67:58:78:e4:bc:0a:6a:e2:f8:62:f8:62:f8:ea:fa:bc
Are you sure you want to continue connecting (yes/no)?

This gives you the opportunity to verify that the machine you are logging into is the
machine you are expecting by confirming that the host’s cryptographic key is correct.
Verify that the fingerprint is correct before typing yes to continue logging in.

You can obtain the host fingerprint of a system by asking the administrator or by logging
in at the console and running the command:
$ ssh-keygen –l –f /etc/sshd/ssh_host_key.pub

There are likely to be several ssh_host_*key.pub files. Examine them all.

Once you verify the fingerprint of a system, it is written to ~/.ssh/known_hosts, so you
are not asked this question again. If the remote host’s fingerprint changes for any
reason, ssh displays an error message. If, on investigation, you determine that the
change is legitimate, you can edit ~/.ssh/known_hosts to remove the incorrect
fingerprint. For example, the remote operating system may be reinstalled, causing the
SSH server’s host key to change.

After you have accepted the remote system’s fingerprint, you are asked to authenticate
yourself. You normally do this by entering your password. However, there are
alternative authentication methods, such as public key authentication. See Public key
authentication methods, page 27.

The ssh command logs in to the remote machine using the current user name from
your local host. To login as a different user, for example as the user ‘arcom’, you may
use one of these two command forms:
$ ssh arcom@ael.example.net
$ ssh –l arcom ael.example.net

Many of the commands in the SSH suite accept both these forms for specifying
a login user. The examples in this manual use the user@host form.

AEL Embedded Linux Technical Manual Secure Shell (SSH)

© 2007 Arcom Issue I 26

As well as logging in to a remote machine, ssh can run a command on a remote
machine without the need to login and run it manually. To do this, append the command
to the ssh command line. For example, to examine the contents of the /bin/ folder on a
remote system you might enter:
$ ssh arcom@ael.example.net ls /bin/

When you use ssh to run a remote command, quote shell meta characters that
you want to be passed to the remote system rather than processed locally.

The scp command
The scp command is similar to the regular cp command, except that it uses the SSH
protocol and allows for the source or destination file to be located on a remote system.
You can specify a remote file as follows:
user@host:file

The user@host part is the same as for the ssh command, described in the previous
section. If you don’t specify a file, or you give a relative path (i.e. one which doesn’t
start with /), the default is the remote user’s home folder. If you forget the colon (:), scp
will copy to or from a local file named user@host. This is rarely required.

For example, the following command copies ‘my-file’ to /home/arcom on the remote
system ael.example.net:
$ scp my-file arcom@ael.example.net:

The following command copies the same file to /etc/ on the remote host:
$ scp my-file arcom@ael.example.net:/etc/my-file

To retrieve a remote file, reverse the order of the operands. For example, the following
retrieves /home/arcom/my-file from the remote system:
$ scp arcom@ael.example.net:my-file .

The sftp command
The sftp command behaves like the regular ftp command, except that it uses the SSH
protocol to provide the strong authentication and encryption that regular FTP lacks. You
can specify a user and hostname using the user@host syntax described in the
previous section, for example:
$ sftp arcom@ael.example.net

AEL Embedded Linux Technical Manual Secure Shell (SSH)

© 2007 Arcom Issue I 27

Public key authentication methods
In addition to regular password authentication, SSH also offers public key
authentication. Public key authentication works by generating a public/private key pair.
The public part may be passed around freely in order to transfer it to a remote system
running SSH. The private part must remain a secret, since anyone possessing the
private key can login to any system configured with the public key.

A private key designated for interactive use normally has a pass-phrase that adds an
extra layer of security. However, a private key designated for non-interactive use (such
as in a script on a remote system), does not.

The ssh-agent command enables you to only enter your pass-phrase once per
session. See Further information about SSH, page 28.

Generating keys
Public/private key pairs are generated using the ssh-keygen utility:

$ ssh-keygen -t dsa
Generating public/private dsa key pair.
[...]

This utility asks for a destination (press Enter to accept the default) and a pass-phrase
(which may be left blank). If you accepted the default location, you have a DSA
public/private key pair in ~/.ssh/id_dsa.pub and ~/.ssh/id_dsa.

SSH can also use RSA keys by passing rsa rather than dsa to ssh-keygen. RSA
keys are stored in id_rsa and id_rsa.pub.

The file id_dsa is your private key and you must keep this safe. Your public key is in
id_dsa.pub. You can copy this to a remote machine and append it to the file
~/.ssh/authorized_keys to enable public key authentication on that host.

Once you have configured the remote host, you can continue to use all the SSH utilities
as normal. The authorized_keys file can also be used to restrict the commands that
may be run when that key is used. This means you can restrict the commands that can
be run by an interactive script (where the key has an empty pass-phrase). See Further
information about SSH, page 28.

AEL Embedded Linux Technical Manual Secure Shell (SSH)

© 2007 Arcom Issue I 28

Port forwarding
SSH has the ability to tunnel TCP/IP connections from the local machine to the remote
host and vice-versa. This is useful to provide a secure wrapper around an insecure
protocol.

For example, to create a secure tunnel from the local machine to a mail server running
remotely on port 25, you could enter the following:
$ ssh –L 2525:localhost:25 user@mail.example.net
localhost refers to the local host from the perspective of the remote host. Anyone
connecting to port 2525 on your local host is therefore forwarded through the SSH
tunnel to port 25 on mail.example.net.

You need not use localhost. For example, the following command enables anyone with
access to your local machine to access mail.example.net, which we assume is secured
behind the example.net firewall:
$ ssh –L 2525:mail.example.net:25 firewall.example.net

You can also forward a port on the remote machine to any machine accessible from
your local machine. For example, to tunnel port 2525 on the remote machine to a mail
server on your local network, enter the following:
$ ssh –R 2525:mail.example.net:25 ael.example.net

Anyone connecting to port 2525 on ael.example.net is forwarded to mail.example.net
on your local network.

Further information about SSH
The preceding sections provide simple examples of what you can achieve using SSH.
Further information about using SSH is on the OpenSSH website, at www.openssh.org.

http://www.openssh.org/

AEL Embedded Linux Technical Manual Package management

© 2007 Arcom Issue I 29

Package management
A default installation of AEL Embedded Linux can contain several optional packages,
such as the OpenBSD Secure Shell (SSH), Web and FTP servers. If your application
does not require these and you want to free some space in the Flash, you may remove
some packages. Conversely, if you require a package that is not installed by default,
you can add packages to the board.

AEL Embedded Linux uses the dpkg package management system to manage
packages on the target system. An application is typically packaged as a single .deb
package file, which can be installed as described in Adding packages, below.

A library is normally split into two packages, the runtime package libFOO and the
development package libFOO-dev. The libFOO package must be installed on the target
system, while the libFOO-dev package must not. To compile and link applications
against a library, both the library package itself and the development package must also
be present in the host environment.

All of the library runtime and development packages that are included on the
Development Kit CD (even those that are not included in the default target installation)
are installed into the host environment by the installer. If you install a library package
from another source, such as one provided by Arcom technical support, you must install
the runtime and development packages into the host environment yourself. See
Installing additional packages into the host environment, page 35.

You can view a list of packages installed on the target by running the following
command on the target:
$ dpkg –l
When you run this command, the following information is displayed:
…
ii libc6 2.3.1−5
…
ii bash 2.05b−3
…

Removing packages
Packages can be removed using dpkg. For example, enter the following to remove the
example package:
dpkg –r example

Adding packages
Additional software components in .deb packages are on the Development Kit CD, in
the /packages folder. To add a package to the target system, follow these steps:

1 Transfer the required package to a temporary folder on the target, for example:
$ scp /mnt/cdrom/packages/ntp/ntpd_4.1.1-1_arm.deb \
root@target.example.net:/tmp

2 Install the package on the target by entering the following:
dpkg –i /tmp/ntpd_4.1.1-1_arm.deb

AEL Embedded Linux Technical Manual The X Window System

© 2007 Arcom Issue I 30

The X Window System
AEL Embedded Linux makes use of the X.Org release of X11R7.0. This has numerous
utilities, certain libraries, almost all fonts, and support for some X extensions omitted to
reduce the footprint.

You can start the X server on the primary display device by running the command
startx.

Refer to ftp.x.org/pub/X11R7.0/doc/html for details about configuring the X server, and
to the board QuickStart Manual for board-specific details about display or input devices.

Window manager
By default, AEL Embedded Linux comes installed with the standalone version of the
matchbox window manager. The regular version of matchbox is available on the
Development Kit CD, and can be installed to provide a more fully featured environment.
The matchbox window manager is specifically designed to require very few resources.
It aims to target systems with little screen real estate and limited input mechanisms
(such as a touchscreen). To support these aims, all windows remain maximized at all
times (unlike other window managers, which allow you to arbitrarily choose position and
size).

AEL Embedded Linux is not supplied with any other window managers. You may,
however, choose to build and install another window manager. Alternative window
managers (and other applications) can be started by editing the /etc/X11/xinit/xinitrc
shell script.

Using a touchscreen

For information about calibrating and configuring touchscreen devices, see
Calibrating touchscreens, page 23.

Touchscreens are supported via the tslib input driver and are configured with an
“InputDevice” stanza in the /etc/X11/xorg.conf configuration file:
Section "InputDevice"
 Identifier "Touchscreen"
 Driver "tslib"
 Option "Device" "/dev/input/event2"
 Option "AlwaysCore" "True"
EndSection
[...]
Section "ServerLayout"
 [...]
 InputDevice "Touchscreen"
EndSection

The Device option specifies the input event device provided by the touchscreen driver.

The AlwaysCore option enables the touchscreen as a core pointer (i.e. it can be used
to control the pointer) in addition to any other core pointer devices (such as mice).

http://ftp.x.org/pub/X11R7.0/doc/html/

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 31

Developing software for AEL Embedded Linux
To ensure that an application is able to run correctly when installed on a target board,
you must ensure that it is compiled and linked against the libraries that are present on
the target system. This is particularly true when the processor architecture of the target
board differs from the processor architecture of the host system, but is also true if the
processor architecture is the same. The act of compiling for a target system that differs
from the host system is known as cross compilation.

The AEL Embedded Linux host environment contains a suite of cross compilers and
other tools, as well as the libraries and headers that are necessary to compile
applications for use on AEL Embedded Linux. It also contains various tools that are
useful when working with AEL Embedded Linux target systems.

Host system requirements

The AEL Embedded Linux host environment requires a host Linux distribution that is
compatible with the Linux Standard Base1 (LSB) version 1.3. The LSB is an attempt by
Linux distribution vendors to specify a set of basic functionality that is present on any
Linux distribution.

Each Linux distribution vendor who supports the LSB provides a package which
ensures that the LSB functionality is present on the system. Many Linux distributions do
not include LSB support in the base installation, so you may need to add it.

The LSB support package is by its nature tightly coupled with the Linux
distribution and version. It is therefore important that you install the LSB
package for the exact distribution version you are using as supplied by the
distribution vendor. An LSB support package downloaded from anywhere else is
unlikely to function correctly.

1 www.linuxbase.org

http://www.linuxbase.org/

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 32

Host system requirements table

The distributions confirmed as supporting the Arcom host environment using the LSB
packages supplied by the Linux distribution vendor are listed in the following table.

Arcom recommend Fedora Core as a host distribution.

Distribution Vendor LSB package Notes

Red Hat 7.3 (VALHALLA) Red Hat, Inc. redhat-lsb or on CD #3 [0]

Red Hat 8.0 (PSYCHE) Red Hat, Inc. redhat-lsb or on CD #3 [0]

Red Hat 9 (SHRIKE) Red Hat, Inc. redhat-lsb or on CD #3

Fedora Core 1 (YARROW) Fedora Project redhat-lsb or on CD #3 [1], [2]

Fedora Core 2 (TETTNANG) Fedora Project redhat-lsb or on CD #3 [2]

Fedora Core 3 (HEIDELBERG) Fedora Project redhat-lsb or on CD #1 [2], [3]

Mandrake Linux 10.0 Official mandrakesoft lsb on CD #1 [4]

Mandrake Linux 10.1 Official mandrakesoft lsb on DVD [4]

SuSE Linux 9.0 SuSE/Novell lsb or on CD #1 [5]

SuSE Linux 9.2 SuSE/Novell lsb or on DVD [5]

Debian GNU/Linux 3.0
(WOODY)

Debian lsb [6], [7]

Debian GNU/Linux 'Testing'
(currently SARGE)

Debian Lsb [7], [8]

Debian GNU/Linux 'Unstable'
(SID)

Debian Lsb [7], [8]

Ubuntu Linux 5.04 (Hoary
Hedgehog)

Ubuntu Lsb on CD [7], [9]

For an explanation of the Notes, see the following page.

http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/
http://www.redhat.com/
ftp://@ftp.redhat.com/pub/redhat/linux/7.3/en/os/i386/RedHat/RPMS/
http://www.redhat.com/docs/manuals/linux/RHL-8.0-Manual/
http://www.redhat.com/
ftp://@ftp.redhat.com/pub/redhat/linux/8.0/en/os/i386/RedHat/RPMS/
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/
http://www.redhat.com/
ftp://@ftp.redhat.com/pub/redhat/linux/9/en/os/i386/RedHat/RPMS/
http://fedora.redhat.com/
http://download.fedora.redhat.com/pub/fedora/linux/core/1/i386/os/Fedora/RPMS/
http://fedora.redhat.com/
http://download.fedora.redhat.com/pub/fedora/linux/core/2/i386/os/Fedora/RPMS/
http://fedora.redhat.com/
http://download.fedora.redhat.com/pub/fedora/linux/core/3/i386/os/Fedora/RPMS/
http://www.mandrakesoft.com/products/10
http://www.mandrakesoft.com/
http://www.mandrakesoft.com/products/101
http://www.mandrakesoft.com/
http://www.suse.com/
ftp://ftp.suse.com/pub/suse/i386/9.0/suse/
http://www.suse.com/
ftp://ftp.suse.com/pub/suse/i386/9.0/suse/
http://www.debian.org/releases/woody/
http://www.debian.org/releases/woody/
http://www.debian.org/
http://www.debian.org/releases/testing/
http://www.debian.org/releases/testing/
http://www.debian.org/
http://www.debian.org/releases/unstable
http://www.debian.org/releases/unstable
http://www.debian.org/
http://ubuntulinux.com/

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 33

Notes on host system requirements table
The numbers in the Notes column of the table on the previous page refer to the
following information:

[0] Red Hat 7.3 and 8.0 were shipped with version 1.1 of the LSB. It is possible to
install the Arcom host environment on this platform by passing the following
additional arguments to the Arcom host environment installation program:

 --ignore-lsb-version and --ignore-package-dependencies

[1] Red Hat discontinued their Red Hat Linux product after version 9. In its place
they started the Fedora project. Therefore Fedora Core 1 can be considered the
successor to Red Hat 9.

[2] You can install Fedora supplied packages (such as the redhat-lsb package)
using the yum tool. Simply run the command "yum install <PACKAGES>".
yum requires an active Internet connection. You can also install such packages
by hand using the rpm tool, by running the command "rpm –install –verbose --
hash <PACKAGES>".

[3] Installing additional packages on Fedora Core 3 requires that RPM know about
the Fedora cryptographic keys. These can be imported using the command
"rpm --import RPM-GPG-KEY-fedora". The file RPM-GPG-KEY-fedora is on
the first CD.

[4] You can install Mandrakesoft supplied packages (such as the lsb package) using
the urpmi tool. Simply run the command "urpmi <PACKAGES>".

[5] You can install SuSE supplied packages (such as the lsb package) using the
yast tool. Simply run the command "yast --install <PACKAGE>".

[6] Debian GNU/Linux 3.0 requires that the --ignore-required-package-versions
argument be passed to the Arcom host environment installation program.

[7] You can install Debian or Ubuntu supplied packages (such as the lsb package)
using the apt-get tool. Simply run the command "apt-get install
<PACKAGES>". apt-get requires an active Internet connection.

[8] Debian “Testing” and “Unstable” were known to work at the time of writing (April
2005). However, due to the continual updates to these distributions, this may
change at any given time.

[9] Ubuntu does not configure a root password by default. Instead you can use the
sudo tool to run any command as root by entering your user password. For
example “sudo perl /cdrom/install“ or “sudo apt-get install <PACKAGES>“.

If your host distribution is not listed in the host system requirements table, you may still
be able to install the host environment, as your distribution may be derived from one of
the distributions that are listed.

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 34

Newer versions of many distributions ship with LSB version > 1.3. In such case, you
can simply add a symbolic link as:

cd /lib

ln -sf ld-lsb.so.2 ld-lsb.so.1

or

ln -sf ld-lsb.so.3 ld-lsb.so.1

(whichever appropriate as per LSB version provided by your distribution.)

If you are still unable to install the host environment but you know that your chosen
distribution supports the LSB version 1.3, please contact Arcom to discuss support for
your chosen distribution. Alternatively, install a supported distribution that includes
support for the LSB.

The AEL Embedded Linux host environment requires up to 150MB of disk space when
installed, but may require up to 500MB during the installation process.

Installing the AEL Embedded Linux host environment
To install the host environment, mount the CD and run (as root) the script install, which
is located in the top folder of the CD. Pass any options required for your distribution, as
described in the preceding section. For example (assuming your distribution is
configured to mount CDs on /mnt/cdrom):
mount /mnt/cdrom
perl /mnt/cdrom/install

Some Linux distributions are configured to disallow execution of applications on
removable media such as a CD, hence we call perl directly.

Once you have installed the host environment, you must add the folder /opt/arcom/bin
to your path and the folder /opt/arcom/share/man to your manual path. You can do this
temporarily for the current login session by running the following commands:
$ export PATH="/opt/arcom/bin:$PATH"
$ export MANPATH=”/opt/arcom/share/man:$MANPATH”

Alternatively, you can cause these commands to take effect for all login sessions for a
particular user by adding them to the file .bash_profile in that user’s home directory.

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 35

Installing additional packages into the host environment

When the host environment is installed, all of the library runtime and development
packages that are supplied on the Development Kit CD are installed into it. If you obtain
a library package from some other source, such as Arcom Technical Support, you must
install the runtime and development packages yourself.

This section explains installing packages in the host environment, whilst Package
management, on page 29, explains installing packages in the target device. The
installation into both the host and target environments of applications and binaries that
you have built yourself (i.e. not using packages) is explained later in this section.

Many of the packages you want to install in the host environment are in the form of .deb
packages, suitable for installation on the target device. These must be converted into
LSB-compliant .rpm packages suitable for installation in the host environment. A small
minority of packages (for example cross compilers) are strictly intended for the host
environment only, and so are supplied directly as LSB .rpm packages.

The host environment contains a tool, ael-cross-rpm, that is used to convert a .deb
package into an LSB-compliant .rpm package. A .deb package ‘foo’ is converted by the
tool into an RPM package ‘lsb-arcom-ARCH-linux-foo’, with the correct metadata for an
LSB package and the correct file system layout for the Arcom host environment.

A .deb package or set of .deb packages can be converted to LSB compliant .rpm
packages by passing them to ael-cross-rpm. To do this, enter:
$ ael-cross-rpm libc6_2.3.1-3_arm.deb libc6-dev_2.3.1-3_arm.deb
When you enter this command, the following is displayed:
libc6_2.3.1−3_arm.deb
libc6−dev_2.3.1−3_arm.deb

You can see the newly created LSB .rpm packages in the current folder by entering:
$ ls *.rpm
When you enter this command, the following is displayed:
lsb−arcom−arm−linux−libc6−2.3.1−3.noarch.rpm
lsb−arcom−arm−linux−libc6−dev−2.3.1−3.noarch.rpm.

If ael-cross-rpm determines that a .deb package contains no files that would be useful
in the host environment, it does not produce any output for that package.

Once you have created the LSB .rpm packages, you must install them on your host
system. The method for doing this varies between Linux distributions.

On a distribution that uses the RPM package manager, for example Red Hat Linux, you
can install the LSB .rpm packages directly using the rpm tool:
rpm -ivh lsb-arcom-arm-linux-libc6-2.3.1-3.noarch.rpm
When you enter this command, the following is displayed:
Preparing... ################################ [100%]
 1:lsb−arcom−arm−linux−lib ################################# [100%]

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 36

On distributions that use other package managers you must use another tool to install
the LSB .rpm package. For example, Debian GNU/Linux provides the tool alien that
supports installing LSB .rpm packages:
alien -ik lsb-arcom-arm-linux-libc6-2.3.1-3.noarch.rpm

Like AEL Embedded Linux, Debian uses dpkg as its package management tool.
However you cannot install a .deb built for AEL Embedded Linux directly in your
Debian system (or vice-versa). Doing so could damage your host system.
You must convert the AEL Embedded Linux .deb to an LSB RPM using ael-
cross-rpm (so that the meta data and file system layout can be modified to be
suitable for the host rather than target environments) and then install the LSB
.rpm package using alien.

Other host distributions have a similar method for installing LSB packages. For details,
consult the documentation for your host distribution.

Obtaining help
You can view help about many of the utilities provided by the host environment using
the man utility. For example, to get help on the arm-linux-gcc compiler, run the following
command:
$ man arm-linux-gcc

Cross compiling applications and libraries

This section includes a number of examples in which we use the arm-linux
cross compiler. For other boards, substitute the appropriate prefix from the table
below.

Compiling a simple C application is simply a matter of using the cross compiler instead
of the regular compiler:
$ arm-linux-gcc -o example -Wall -g -O2 example.c

Tools available in the host environment

The majority of the cross compilation tools are the same as their native compilation
counterparts, with an additional prefix that specifies the target system. The prefixes for
the various target architectures are described in the following table:

Architecture Prefix Example processors

Intel x86 i386-linux- AMD SC520, AMD Geode GX1

ARM and XScale (little-endian) arm-linux- Intel PXA255

ARM and XScale (big-endian) armbe-linux- Intel IXP425

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 37

The following cross compilation tools are provided:

Tool Description

ar Manage archives (static libraries).

as Assembler.

c++, g++ C++ compiler.

cpp C pre-processor.

gcc C compiler.

gdb Debugger.

ld Linker.

nm List symbols from object files.

objcopy Copy and translate object files.

objdump Display information about object files.

ranlib Generate indexes to archives (static libraries).

readelf Display information about ELF files.

size List object file section sizes.

strings Print strings of printable characters from files (usually object files).

strip Remove symbols and sections from object files (usually debugging
information).

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 38

Common open source build systems and cross compilation
The majority of open source software available uses configure scripts as part of the
build process. Passing the following on the command line in addition to your normal
options is often all that is required:

--host=SYSTEM-TYPE

Where SYSTEM-TYPE is the system type of the target, for example arm-linux.

‘Host’ in this context refers to the system that the final application is to run on (not to the
build system). For example:

$./configure --host=arm-linux [other options]

Some configure scripts accept a --target=SYSTEM-TYPE option ‘Target’ in this context
is only of relevance when building cross-compilers and similar tools, which run on one
system but produce something that runs on a different system (the target).

Not all configure scripts follow this behavior. In particular, build systems not
generated with the autoconf and automake tools are likely to not behave as
expected. Fortunately, a great many open source projects do use these tools.

Building libraries
Building libraries is similar to building applications. The libraries must be configured and
built to run on the target board. This means that the --prefix must be /usr, so that
libraries expect to be installed to /usr/lib/. However, the library and headers must also
be installed on the build system in /opt/arcom/SYSTEM-TYPE/lib and
/opt/arcom/SYSTEM-TYPE/include (where SYSTEM-TYPE is the system type, such as
arm-linux or i386-linux), so that the cross compiler and linker can use them.

With a standard automake and autoconf build system, this can be achieved by entering:
make install prefix=/opt/arcom/arm-linux

Alternatively, you could install to /tmp/myapp-tmp and move the libraries and headers
into /opt/arcom/SYSTEM-TYPE by hand.

Installing applications and libraries on the target
Installing an application or library that uses the automake tool is normally achieved by
calling the install target, as follows:
$ make install

This causes the application or library to be installed into the host file system,
potentially causing enormous damage to the system.

Consider the consequences of replacing libc on an X86 system with a libc cross
compiled for an ARM system.

Perform the build and install of applications for the target as a non-root user on
the host system, as this can prevent the worst disasters.

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 39

Fortunately, automake provides a variable called DESTDIR that is used as the base
folder for installation. DESTDIR is normally an empty string, but you can define it to
install into a temporary folder, as follows:
$ make install DESTDIR=/tmp/target-install

This causes the package to be installed with the standard path names but rooted in
/tmp/target-install. For example, binary packages will be installed in /tmp/target-
install/usr/bin/.
You can now remove from /tmp/target-install any files that you do not want to install on
the target, such as documentation and static libraries (*.a), and transfer it to the board:
$ cd /tmp/target-install

You may also want to use the strip command to remove unnecessary symbols from any
application binaries or libraries:
$ arm-linux-strip --strip-unneeded ./usr/bin/app
$ arm-linux-strip --strip-unneeded ./lib/libtmp.so

Custom build systems and cross compilation
There are projects that use build systems which differ from the system discussed
above. There is no simple recipe for building applications with non-standard or custom
build systems. You must consult build instructions, README files and similar
documentation, study the build system makefiles, and so on.

The RUTE Linux Tutorial (which is on the Development Kit CDROM and online)
contains sections about the use of make and makefiles.

You can normally edit the makefile to prefix all references to tools mentioned in Tools
available in the host environment (page 36) with the correct cross compilation prefix. A
makefile often defines variables such as CC and CXX to contain the C and C++
compilers respectively. In general, setting environment variables to override these
before running make meets with some success:

$ CC=arm-linux-gcc CXX= arm-linux-g++ make

You must install to a temporary folder so as not to overwrite your build system’s native
libraries and binaries. A custom build system may not make use of the DESTDIR
variable. Consult any documentation you have and examine the makefile for install
targets or similar.

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 40

Cross compilation example
A trivial example application that utilizes a shared library is included on the
Development Kit CD. The two source tarballs are in /examples/c/trivial/trivial-app-
1.0.tar.gz and /examples/c/trivial/libtrivial-1.0.tar.gz. This example uses a standard build
system based on the autoconf, automake and libtool utilities. The procedure is
therefore most relevant to real applications using the same build system.

The autoconf, automake and libtool utilities are commonly used by Open
Source projects. They can be found at www.gnu.org/software/autoconf/,
www.gnu.org/software/automake/, and www.gnu.org/software/libtool/,
respectively.

Building the shared library
To build the shared library, follow these steps:

1 Unpack the library distribution using the following commands:
$ tar xzf libtrivial-1.0.tar.gz
$ cd libtrivial-1.0

2 Configure the library as follows:
$./configure --prefix=/usr --host=arm-linux
$ make

Note the use of the --host option. For more information about this option,
see Common open source build systems and cross compilation, page 38.

3 Install the library on the host (build) system by entering the following command:
make install prefix=/opt/arcom/arm-linux

4 Install for the target (this is transferred to the target later), as follows:
$ make install-strip DESTDIR=/tmp/trivial-app

Building the application
To build the application, follow these steps:

1 Unpack the application distribution:
$ tar xzf trivial-app-1.0.tar.gz
$ cd trivial-app-1.0

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 41

2 Configure the application:
$./configure --prefix=/usr --host=arm-linux
$ make

Again, note the use of the --host option. For more information about this
option, see Common open source build systems and cross compilation,
page 38.

3 Install for the target:
$ make install-strip DESTDIR=/tmp/trivial-app

Installing on the target
To install the application on the target, follow these steps:

1 Generate the tarball to be installed based on the installed files:
$ cd /tmp/trivial-app
$ tar czvf ../trivial-app.tar.gz *
$ cd ..

For a real application, you may want to remove files that are not required
on the target (such as documentation) from the temporary folder before
you build the tarball.

2 Transfer the installation tarball to the target board using scp (example assumes
that target board’s IP address is 10.2.55.5):
$ scp trivial-app.tar.gz root@10.2.55.5:/tmp

If DNS is set, you can use the name of the target board in above command
(example assumes that the name of target board is penguin.example.net)

$ scp trivial-app.tar.gz root@penguin.example.net:/tmp

3 Enter the following command on the target board (as root):
cd /
tar xzvf /tmp/trivial-app.tar.gz

4 Update the shared library cache:
ldconfig

5 Run the application:
$ trivial-app

The following message is displayed:
This is a trivial application.
This is a trivial function in a trivial shared library.

mailto:root@penguin.example.net:/tmp

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 42

Debugging applications on the target
The AEL Embedded Linux host environment includes the GNU Debugger (GDB). GDB
enables you to control the execution of your application, examine program state and
view the application code. GDB is a symbolic debugger. This means that you can debug
your application using the function and variable names that were used in the source
code.

The main GDB application binary is automatically installed on your host system as part
of the host environment. The recommended method of debugging target applications
using GDB is over an Ethernet connection using the gdbserver utility, which is present
on the target by default.

It is possible to run GDB directly on the target board by installing the GDB package from
the Development Kit CD. We do not recommend this because GDB is relatively large
and memory-hungry. Furthermore, you would not benefit from full symbolic debugging
as your application source code is not available on the target.

This section describes the basics of how you can use GDB to debug an application
running on a remote target. Please consult the GDB manual for more information about
using GDB. The manual is available on the Development Kit CD in /manuals/gdb.pdf, or
from the GDB website at www.gnu.org/software/gdb.

Compiling an application for debugging

Before you can debug a program using the full symbolic information, you must compile
and link the application with full symbolic information. This is done by adding the –g
option to both compile and link commands. For example, to compile a simple hello
world application, enter the following:
$ arm-linux-gcc –g –o hello hello.c

Once compiled, copy the binary to your target system using scp:
$ scp hello root@penguin.example.net:/tmp/hello

It is possible to debug optimized programs with GDB, but you may find that
optimizations such as those performed when using the –O2 option interfere with GDB’s
understanding of program flow and variable location. We recommend that you disable
optimizations in your application while you are debugging it either by using –O0 or by
leaving out the –O options all together.

http://www.gnu.org/software/gdb

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 43

Starting GDB and GDB server
Now that the binary has been compiled with debugging information and copied to the
board, you can start the gdbserver and initiate a GDB session on your target system. To
do this, follow these steps:

1 Start the gdbserver process on your target system, giving a port number to listen
on (9000 in the following example) followed by the program to be debugged:
$ gdbserver :9000 /tmp/hello “hello world”

Arguments can be passed to the application by adding them to the gdbserver
command line. The above command starts gdbserver listening on port 9000,
which then loads /tmp/hello, passing the string “hello world” as an argument. It
then stops before running the application and waits for a remote GDB session to
be initiated.

2 Initiate a GDB session on the host and pass the application binary as a parameter
to GDB:
$ arm-linux-gdb hello

GDB starts, displaying a banner followed by a (gdb) prompt.

3 Connect to the remote system, assuming it is 192.168.1.4, by typing:
(gdb) target remote 192.168.1.4:9000

This connects to the gdbserver process you started in step 1.

Once the remote connection is established any of the normal GDB commands
may be used to debug the application, such as setting a breakpoint on the main()
function and continuing:
(gdb) b main
(gdb) c

When the application exits you'll need to repeat step 1 (i.e. starting gdbserver) and
reconnect with the target command.

You may need to tell GDB where to find the target libraries by setting the GDB
variable solib-search-path (a comma separated list of paths to search) before
connecting to the target. For example:
(gdb) set solib-search-path /opt/arcom/arm-linux/lib

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 44

Compiling a kernel

Overview
This section explains how to build a new Linux kernel, along with the associated
modules, and install them on your target board.

To cross compile the kernel, you must have the cross compilation environment installed.
For more information, see Installing the AEL Embedded Linux host environment, page
34.

An archive containing the patched Linux kernel source tree used in the Development Kit
is installed by the AEL Embedded Linux host environment as /opt/arcom/ src/linux-
source-VERSION.tar.gz. Refer to your board’s Quickstart Manual for additional board-
specific instructions.

Unpacking and configuring the kernel
The kernel must be recompiled on your host system.

To unpack and configure the kernel, follow these steps:

1 Unpack the source code:
$ tar zxf /opt/arcom/ src/linux-source-VERSION.tar.gz

The folder linux-source-VERSION is created.
$ cd linux-source-VERSION

2 Configure your kernel image. You can get a default configuration by running the
following command:
$ make ARCH=ARCH TARGET_defconfig

Where TARGET is the name of the board and ARCH is the CPU architecture of
the board. Consult your Quickstart Manual to determine the correct default
configuration for your target board.

ARCH here refers to the target CPU architecture, which is the basic CPU
architecture and does not include additional information such as
endianness (e.g. arm rather than armbe). See Specific terms on page 8
for more information.

In general when interacting with the kernel build system directly (e.g. via
make) it is the target CPU architecture that should be used, while the AEL
Embedded Linux tools expect the full target architecture.

3 Optional. Tweak the options to your satisfaction using the kernel configuration
tools, once you have a default configuration for your board. For example you can
use the menuconfig tool, as follows:
$ make ARCH=ARCH menuconfig

4 Save your configuration once you have made any changes required, and exit.

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 45

Building the kernel

Once the kernel has been configured it can be built using the ael-kernel-build tool. This
tool builds the kernel and associated modules, as well as any packaged external kernel
modules, as required.

The basic invocation of the ael-kernel-build utility is as follows:
ael-kernel-build [OPTIONS]… <TARGETS>

The possible TARGETs are described in the following table. In most cases, you use
image to build a kernel image and the in-tree modules, and perhaps modules to build
any external (out-of-tree) modules.

Target Description
image Builds a package containing a kernel image and modules.
clean Cleans the kernel build tree.
modules Builds packages for any external modules. See Building

external modules, below, for details.
modules-clean Cleans the build trees for any external modules that have

been built.

The main OPTIONS that you can specify when using ael-kernel-build are explained in
the following table:

Option Description
--architecture=ARCH Required. Specifies the target architecture to build the

kernel for. Use one of the target architecture names from
the table below.

--revision=REVISION Specifies the version number to be used in the packages
that are created. This is typically a single integer or a word
combined with an integer, for example ‘1’ or ‘customer.1’.
The numeric part of the revision should be incremented
with each release.

The architectures for which you can build the kernel are listed in the following table:

Processor architecture Target architecture name Example processors

Intel x86 i386 AMD SC520, AMD Geode GX1

ARM and XScale
(little-endian)

arm Intel PXA255

ARM and XScale
(big-endian)

armbe Intel IXP425

For more information on ael-kernel-build and the available options and targets, consult
the ael-kernel-build(1) man page.

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 46

Building external modules
External modules are kernel modules (typically device drivers) that aren’t part of the
main kernel source. Arcom provide source to several external modules which are used
by the standard AEL Embedded Linux system. Their source is provided in separate
source packages (called PACKAGE-source-VERSION) which installed place source
tarballs on the host as /opt/arcom/src/modules/PACKAGE-VERSION.tar.gz. These
source tarballs unpack as modules/PACKAGE in the current directory.

This section applies only to external modules which have been packaged and
supplied by Arcom. Any further third party external modules will have their own
build system. Please consult the documentation supplied by the third party for
instructions on building such modules.

In order to build external modules the source code must be unpacked into the same
directory as the kernel source. Running ael-kernel-build with the modules target will
find and build all the unpacked modules. By default the ael-kernel-build utility will
search for modules to build in the ../modules/ folder relative to the top of the kernel
source tree.

For example, from the top level of the linux source (i.e. where you configure and build a
kernel):
$ cd ..
$ tar xzf /opt/arcom/src/modules/aim104-5.tar.gz
$ cd linux-source-2.6.11-arcom1
$ ael-kernel-build --architecture arm modules

This will produce an aim104-modules-2.6.11-arcom1_5+2.6.11-1_arm.deb package for
installation on the target.

Some boards require external modules to provide key functionality.

Installing the new kernel and modules
The Linux kernel image .deb package and any additional packages for external
modules can be installed using the dpkg command, as described in Package
management, on page 29.You must also update the RedBoot boot script to load the
new kernel. You do this by either:

• Changing the alias used by the boot script to specify the kernel filename, for
example:
RedBoot> alias kernel /boot/vmlinuz-VERSION

-or-

• Editing the boot script itself using the fconfig command (see page 55).

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 47

Common embedded software development tasks

Accessing the physical address space
When developing software for AEL Embedded Linux, it is sometimes necessary to
access the processor’s physical address space from within your application. For
example, you may need to tweak memory mapped register settings within the CPU or
to access some external peripheral such as a GPIO pin.

A Linux application may only access the virtual address space that the Linux kernel has
created for it. This virtual address space normally does not contain mappings to the
physical regions that you want to use. An application can create a mapping to an
arbitrary physical address by opening the /dev/mem special device file, which provides
access to the entire physical address space, and then performing an mmap() operation
on the file handle.

For security reasons, the application must be running as root in order to do this.

Getting the specifics of this operation correct can be tricky, so we provide a library
(libdevmem) that handles this complexity for you. The library provides a number of
functions:
libdevmem_handle libdevmem_open(unsigned long base,
 unsigned long length);
int libdevmem_close(libdevmem_handle handle);
TYPE_t libdevmem_read_TYPE(libdevmem_handle handle,
 unsigned long offset);
void libdevmem_write_TYPE(libdevmem_handle handle,
 unsigned long offset,
 TYPE_t value);

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 48

The following table explains the functions provided by libdevmem (which are also
described in /opt/arcom/SYSTEM-TYPE/include/libdevmem.h):

Function Description

libdevmem_open Maps a physical address into the current virtual address
space, returning a libdevmem_handle that serves as a
handle onto the mapping.
Takes the physical address to map and the length of the
region to map and returns.
Returns NULL on error and sets errno accordingly.

libdevmem_close Unmaps an existing mapping.

Takes a handle as returned by libdevmem_close.

Returns 0 on success, –1 on error, and sets errno
accordingly.

libdevmem_read_TYPE Reads a value from an offset within a mapping.

Takes a handle and an offset and returns a TYPE_t that is
the value that was read. TYPE may be one of uint8, uint16 or
uint32.

libdevmem_write_TYPE Writes a value to an offset within a mapping.

Takes a handle, an offset and a TYPE_t that is the value to
write. TYPE may be one of uint8, uint16 or uint32.

An application that wishes to use libdevmem must include the libdevmem.h. It must also
include libdevmem when linking:
$ arm-linux-gcc –o application application.o -ldevmem

The library is currently available only as a static library.

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 49

Using an Arcom PC/104 I/O board
AEL Embedded Linux comes pre-installed with drivers for a selection of Arcom’s
PC/104 I/O boards. The following AIM104 peripheral boards are supported:

Board Module Device node

AIM104-RELAY8/IN8 aim104-relay.o /dev/arcom/aim104/relay8/{0..7}

AIM104-IN16 aim104-in16.o /dev/arcom/aim104/in16/{0..7}

AIM104-OUT16 aim104-out16.o /dev/arcom/aim104/out16/{0..7}

AIM104-IO32 aim104-io32.o /dev/arcom/aim104/io32/{0..7}

AIM104-MULTI-IO aim104.multi-io.o /dev/arcom/aim104/multi-io/{0..7}

Peripheral boards containing serial ports, such as the AIM104-COM4 and the
AIM104-COM8, are supported by the standard 16550 UART driver in the Linux
kernel. These boards can be configured using setserial, as described on page
13.

The drivers are supplied as kernel modules that must be loaded to access the device.
Each module can support up to eight individual boards that are configured by passing a
list of I/O addresses using the io_base= module parameter. This is a comma-separated
list of addresses. For example, if you have two AIM104-RELAY8/IN8 boards with base
addresses configured as 0x180 and 0x184:
modprobe aim104-relay8 io_base=0x180,0x184

Some boards may require an offset to be added to the base address. Refer to
the board’s Quickstart Manual for details.

Once the kernel driver has been loaded then the libaim104 library can be used to
access the AIM104 boards. The library provides functions for each of the peripheral
boards. The functions are defined in the C header file arcom/libaim104.h.

Each function takes a file handle obtained by opening the device node listed in the
above table. All functions return 0 or a positive value on success, and a negative value
on failure. The possible libaim104 error codes are explained in the following table:

Error code Explanation
AIM104_SUCCESS = 0 Success. No error occurred.

AIM104_EBAD_CHANNEL = -10 The given channel is invalid.

AIM104_EIO = -20 Low-level I/O error. Check errno for details.

AIM104_ERANGE = -30 The given value was out of range.

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 50

AIM104-RELAY8/IN8
The library libaim104 provides several functions on AIM104-RELAY8/IN8:
int aim104_relay8_enable_relays(int fd, int enable);
int aim104_relay8_set_all(int fd, unsigned char set);
int aim104_relay8_set_masked(int fd, unsigned char mask,
 unsigned char set);
int aim104_relay8_inputs(int fd);
int aim104_relay8_relay_status(int fd);

The libaim104 functions on AIM104-RELAY8/IN8 are explained below:

Function Explanation
aim104_relay8_enable_relays Enables all relays if the enable parameter is true.

aim104_relay8_set_all Sets all 8 relays to the state given by set.
aim104_relay8_set_masked Sets all relays selected by the mask parameter to the

state given by the set parameter. A relay is selected if
there is a 1 in the corresponding bit position within
mask.

aim104_relay8_inputs Returns the state of the 8 digital I/O lines as a bit
mask.

aim104_relay8_relay_status Returns the current state of the 8 relays as a bit
mask.

AIM104-IN16
The function provided by the library libaim104 on AIM104-IN16 is:
int aim104_in16_inputs(int fd, int channel);

The function aim104_in16_inputs returns the state of digital I/O lines 0-7 as a bit mask
if channel is 0, or lines 8-15 if channel is 1.

AIM104-OUT16
The functions provided by the library libaim104 on AIM104-OUT16 are:
int aim104_out16_enable_outputs(int fd, int enable);
int aim104_out16_set_all(int fd, int channel,
 unsigned char set);
int aim104_out16_set_masked(int fd, int channel,
 unsigned char mask,
 unsigned char set);
int aim104_out16_output_status(int fd, int channel);

When the parameter channel is zero, it selects I/O lines 0-7. When channel is one, it
selects I/O lines 8-15.

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 51

The functions provided by libaim104 on AIM104-OUT16 are explained below:

Function Explanation

aim104_out16_enable_outputs Enables the outputs if enable is 1, disables
otherwise.

aim104_out16_set_all Sets outputs selected by channel to the state
given as set.

aim104_out16_set_masked Sets outputs on channel selected by the mask
parameter to the state given by the set parameter.
A relay is selected if there is a 1 in the
corresponding bit position within mask.

aim104_out16_output_status Returns the current status of the outputs selected
by channel.

AIM104-IO32
The functions provided by the library libaim104 on AIM104-IO32 are:
int aim104_io32_enable_outputs(int fd, int enable);
int aim104_io32_set_all(int fd, int channel, unsigned char set);
int aim104_io32_inputs(int fd, int channel);

The parameter channel selects I/O lines 0-7 when zero, I/O lines 8-15 when one, I/O
lines 16-23 when two and I/O lines 24-31 when 3.

The functions provided by libaim104 on AIM104-IO3 are explained below:

Function Explanation
aim104_io32_enable_outputs Enables the outputs if enable is 1, disables

otherwise.

aim104_io32_set_all Sets the 8 outputs selected by channel to the
state given by set.

aim104_io32_inputs Returns the status of the inputs selected by
channel.

AIM104-MULTI-IO
The functions provided by the library libaim104 on AIM104-MULTI-IO are:
int aim104_multi_io_inputs(int fd);
int aim104_multi_io_ADC(int fd, int channel, int single_ended);
int aim104_multi_io_DAC(int fd, int channel,
 unsigned short output);

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 52

The functions provided by libaim104 on AIM104-MULTI-IO are explained below:

Function Explanation
aim104_multi_io_inputs Returns the status of the 8 digital I/O lines as a

bit mask.

aim104_multi_io_ADC Returns a value read from one of the ADC
inputs. For an ADC input connected in single
ended mode single_ended must be set to
true/non-zero and channel must be between 0
and 15 inclusive. For an ADC input connected
in differential mode, single_ended must be set
to false/zero and channel must be between 0
and 7 inclusive.

aim104_multi_io_DAC Writes the 12 bit unsigned value (0-4095)
output to DAC channel 0 or 1.

Transferring files to and from the target board via a serial connection
If you want to transfer a relatively small file to or from a target board running Linux
without setting up an Ethernet connection, you may want to do it via the serial line.

If you have many files to transfer or the files are large, we recommend you
configure an Ethernet connection and use the scp tool as described in Secure
Shell, page 24. A serial connection typically runs at less than 115200 kilobits per
second, compared with up to 10 or 100 megabits per second for an Ethernet
connection.

AEL Embedded Linux includes the lrzsz utility, which is capable of performing X-, Y-
and Z-modem transfers over a serial line. The protocol you choose depends on the
protocols supported by your terminal emulator. If possible, use Z-modem in preference
to Y-modem, and use X-modem only if nothing better is available. Z- and Y-modem are
capable of transferring multiple files in one session, while X-modem can only transfer a
single file at a time.

Before transmitting or receiving the file, you must run the appropriate utility on the target
system. The following table describes X-, Y- and Z-modem transfer utilities:

 Protocol Receive on the target system Transmit from the target system

Z-modem rz sz [FILES...]

Y-modem rb sb [FILES...]

X-modem rx [FILE] sx [FILE]

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 53

To receive files from the host system on the target system, use the rz, rb or rx utilities.
The rz and rb utilities do not take any parameters, while the rx utility requires you to
give the name of the file to be received.

To transmit files from the target to the host system, use the sz, sb or sx utilities. The sz
and sb utilities can take any number of files to send as parameters, while the sx utility
can only transmit a single file.

Once you have started a utility on the target system, initiate the appropriate type of file
transfer from the terminal emulator on your host. To do this in minicom, press Ctrl-A
followed by S to send or Ctrl-A followed by R to receive.

Extracting an image of the on-board Flash
An image can be extracted from the on-board Flash and sent via an Ethernet
connection to a host system using the netcat tool (nc).

If you intend to download the image to other target devices, remove the SSH
cryptographic keys before taking an image. Otherwise, all of your targets will
have the same private keys, which is a security risk. The SSH keys are stored
in /etc/ssh in the following files:
ssh_host_dsa_key
ssh_host_dsa_key.pub
ssh_host_rsa_key
ssh_host_rsa_key.pub
ssh_host_key
ssh_host_key.pub

A unique new set of keys is generated on each board the first time it is booted.

For example, to extract the first Flash partition from a board to a host with IP address
192.168.1.5, follow these steps:

1 Start a netcat process on the host system listening on a port (4000 in this
example) by entering:
$ nc –l –p 4000 > Flash0.img

2 Extract the Flash image and send it to the host system by running the following on
the target system you want to take an image of:
dd if=/dev/mtdblock0 | nc 192.168.1.5 4000

If you want to take an image of the entire Flash device, rather than just individual
partitions, you can repeat the above procedure for each Flash partition.

A complete list of the Flash partitions on your board is provided in the special
file /proc/mtd.

AEL Embedded Linux Technical Manual Developing software for AEL Embedded Linux

© 2007 Arcom Issue I 54

You can combine the images on the host using the following command:
$ cat Flash0.img Flash1.img ... FlashN.img > Flash.img

Single partitions or images of an entire Flash part can be downloaded onto a target
board, as described in Managing images in Flash, page 60.

AEL Embedded Linux Technical Manual RedBoot

© 2007 Arcom Issue I 55

RedBoot
RedBoot is a complete bootstrap environment for embedded systems. Based on the
eCos Hardware Abstraction Layer, RedBoot inherits the eCos qualities of reliability,
compactness, configurability and portability.

The primary function of RedBoot is to bring up the board to the point where control can
be handed off to another operating system, such as Linux. However, RedBoot also
offers the facility to download binary images via a serial or Ethernet connection and to
update the on-board Flash array.

Ethernet download and debug support is included. RedBoot can configure its IP
parameters via BOOTP, DHCP or statically via the Flash configuration block. Images
can be downloaded via Ethernet using TFTP or HTTP, or over a serial connection using
X- or Y-modem.

The RedBoot command line
RedBoot provides an interactive command line interface which allows management of
Flash images, image download, RedBoot configuration, and so on. The command line
interface is accessible via the serial console or as a telnet connection via Ethernet. If,
however, the target has been configured with a boot script that launches an application
or operating system, the Ethernet console is not available and so you must use the
serial console. Any boot script that has been configured can be aborted by pressing
Ctrl-C on the serial console during the early stages of the boot process. Once the board
has dropped to a RedBoot prompt, you may use either the serial console or telnet via
port 9000.

Configuring and using RedBoot
This section explains how to download images, update the Flash and execute
applications and operating systems. For information about the more advanced features
of RedBoot, refer to the eCos Reference manual, which is on the Development Kit CD
in the folder /manuals/.

You can find out about an individual RedBoot command by typing:
RedBoot> help <command name>

The RedBoot Flash configuration block
RedBoot contains a Flash configuration system that includes information such as a boot
script and networking configuration. The options can be examined and modified using
the fconfig command.

If called with no parameters, fconfig prompts you for each available option in turn.
Alternatively, when entering fconfig, you can include the following parameters:
 fconfig [-i] [-l] [-n] [-d] nickname [value]

AEL Embedded Linux Technical Manual RedBoot

© 2007 Arcom Issue I 56

The following table explains the parameters you can specify when using fconfig:

Parameter Action

-i Initialize the Flash configuration block to default values.

-l List the settings in the Flash configuration block.

-n When listing the current settings, use nicknames rather
than full names.

nickname Only act on the named configuration item.

value Value to set to.

The most interesting configuration options are those that allow the use of BOOTP or a
static network configuration to configure the on-board Ethernet and run a script at boot.
Refer to the Quickstart Manual for your board for more information about a suitable
script to use.

Aliases
RedBoot can store aliases (simple macros) with the fconfig configuration parameters.
Aliases are defined with the alias command:
RedBoot> alias zimage /boot/vmlinuz
RedBoot> alias cmdline "\"console=ttyS0,115200n8 root=/dev/mtdblock1 ro\""

Note the use of quotes to include spaces and backslashes to include quotes.
This syntax is necessary because of the way RedBoot expands the alias when
processing the boot script.

Configuring an IP address
You can use fconfig to configure RedBoot with an IP address using either
BOOTP/DHCP, or a static address. In addition, you can use the ip_address command
to specify an IP address from the command line.

When entering the ip_address command, you can specify the following parameters:
 ip_address [-b] [-l <local IP address>[/<mask_length>]] [-h <server address>]

These parameters are explained in the following table:

Parameter Action

-b Obtains an IP address via BOOTP.

-l <local IP
address>[/<mask length>]

Sets the local IP address to the address entered. You
can also enter the network mask length.

- h <server address> Specifies the default server address used by the load
command.

AEL Embedded Linux Technical Manual RedBoot

© 2007 Arcom Issue I 57

For example, to configure the static IP address 10.2.2.4 with a network mask of
255.255.0.0 (hence length 16) and default server of 10.2.1.1:
RedBoot> ip_address –l 10.2.2.4/16 –h 10.2.1.1

Alternatively, to configure an IP address via BOOTP or DHCP and override the supplied
server address with 10.2.1.1:
RedBoot> ip_address –b –h 10.2.1.1

When run with no parameters, the ip_address command reports the current IP
configuration:
RedBoot> ip_address
IP: 10.2.40.120/255.255.0.0, Gateway: 10.2.1.1
Default server: 10.2.1.1

Loading images into RAM

An image may be loaded into RAM over the serial line (not recommended for large
images as it is slow), over the Ethernet connection or from a JFFS2 file system in the
on-board Flash. When loading over the serial line, the X- or Y-modem protocol may be
used. When loading via Ethernet, the TFTP or HTTP protocols can be used. Before an
image can be loaded via Ethernet, an IP address must be configured using either the
fconfig or ip_address commands. Before an image can be loaded from a JFFS2 file
system it must be mounted using the mount command, as described in the next
section.

When downloading an image via any method, you must provide an address in RAM
where there is enough free space to contain the image. You can see the free regions of
RAM in the output of the version command. Alternatively, the macro %{FREEMEMLO}
evaluates to the base of free memory. This is useful because it avoids the need to
hardcode addresses in your boot scripts. The following examples use the
%{FREEMEMLO} macro.

Images are loaded into RAM using the load command. When entering the load
command, you can specify the following parameters:
load [-r] [-b <base address>] [-h <hostname>] [-m <method>] <filename>

AEL Embedded Linux Technical Manual RedBoot

© 2007 Arcom Issue I 58

These parameters are explained in the following table:

Parameter Action

-r Loads a raw image. The default is to load an SREC format image.

-m <method> Specifies the transfer method. This can be http, tftp, file,
xmodem or ymodem.

-h <host> Specifies the TFTP or HTTP server address, if you are using one
of these methods. The server address given to the ip_address
command, the address supplied by the BOOTP server or the
server address in the Flash configuration block is used (in that
order).

-b <base address> Specifies the address to load the image to. This option is required
when you use the –r (raw image) option.

<filename> The name of the file to load, if you are loading via TFTP or HTTP
or from a file on a JFFS2 file system.

In almost every situation you can use the –r and –b parameters to load a raw image to
a specific address. The exception to this is when loading an ELF formatted file, as these
already contain details of their load address. Loading an SREC format image is beyond
the scope of this manual and is described in the eCos Reference Manual.

For example, the following command loads the raw file application.img from the default
TFTP server to address 0x200000:
RedBoot> load -r -b 0x200000 -m tftp application.img

The following loads an ELF image to the correct address:
RedBoot> load –m tftp redboot-ram.elf

Download via serial connection
Images are downloaded over the serial line using the X- or Y-modem protocols. You can
initiate a transfer by entering the following command:
RedBoot> load –r –b %{FREEMEMLO} –m ymodem

Once you have done this, you must start a Y-modem upload from within your serial
terminal emulation program. Under minicom, this is done by pressing Ctrl-A followed by
S.

AEL Embedded Linux Technical Manual RedBoot

© 2007 Arcom Issue I 59

Download via Ethernet
If you do not have either a web (HTTP) or a TFTP server on your network, refer to your
host system documentation for information about setting one up. If the image you want
to download is small, it may be quicker and easier to perform the download over a serial
connection.

The following instructions assume that you have placed the image you want to
download into the root folder of the TFTP or HTTP server, in a file named
image.img.

To load the image, follow these steps:

1 Configure the network interface if you have not already configured the board with
an IP address. To do this, enter:
RedBoot> ip –l IP_ADDRESS -h SERVER_IP_ADDRESS

2 Load the image over TFTP or HTTP as follows:

• If using TFTP, enter:
RedBoot> load –r –b %{FREEMEMLO} –m tftp image.img

• If using HTTP, most webservers require that the leading forward slash (/) be
present in the file name, so enter:
RedBoot> load –r –b %{FREEMEMLO} –m http /image.img

Loading from a JFFS2 file system

RedBoot provides a mount command that performs a similar function to the Linux
mount command. Only JFFS2 file systems are supported by RedBoot. However, JFFS2
must still be specified using the –t parameter.
RedBoot> mount –t jffs2 –f <partition>

The –f parameter specifies the FIS partition that contains the JFFS2 file system to
access. You can obtain a list of the currently defined partitions using the fis list
command described below. Only one file system may be mounted at a time. The
umount command unmounts the currently mounted file system:
RedBoot> umount

The load command is used to load files from the file system:
RedBoot> load –r –b %{FREEMEMLO} –m file /dir/image.img

The ls command can be used to list the files in a mounted file system:
RedBoot> ls –d /boot

AEL Embedded Linux Technical Manual RedBoot

© 2007 Arcom Issue I 60

Managing images in Flash
Flash is managed under RedBoot using the FIS (Flash Image System) command. This
command has several subcommands that can be used to update the entire Flash from
an image in RAM, or to create and manage images (partitions) within the Flash.

Each FIS partition table entry has the following properties:

Property Description

Name A descriptive name for the image.

Flash Base The offset of the image in Flash.

Memory Base The virtual address of the address in memory that the image
should be loaded to by the fis load command.

Size The total length of the image.

Data Length The length of the data currently stored in the image.

Entry Point The entry point of the image. This is normally equal to the
Flash base (for execute-in-place images) or the memory base.

The following table describes the most commonly used FIS subcommands:

Subcommand Action

init Initializes the FIS partition table.

list Lists the current contents of the FIS partition table.

create Creates a new FIS partition.

load Loads a partition or other region from Flash into RAM.

lock Locks a partition or other region (if available in hardware).

unlock Unlocks a partition or other region (if available in hardware).

write Writes data from RAM to Flash ignoring the any partitions.

Full documentation of the FIS system can be found in the eCos Reference Manual.

Initializing the FIS partition table
Arcom hardware is shipped with a valid FIS partition table. If you have erased the entire
Flash device or want to reinitialize the partition table, you can use the fis init command.

Examining the FIS partition table
The current Flash partition list can be viewed using the fis list command:
RedBoot> fis list
Name FLASH addr Mem addr Length Entry point
FIS directory 0x00000000 0x00000000 0x0001F000 0x00000000
RedBoot config 0x0001F000 0x0001F000 0x00001000 0x00000000

AEL Embedded Linux Technical Manual RedBoot

© 2007 Arcom Issue I 61

Creating a new FIS partition table entry
Images are created in the FIS table using the fis create command. When entering this
command, you can specify the following parameters:
fis create -b <memory base> -l <image length> [-s <data length>] [-f <flash
address>] [-e <entry point>] [-r <ram address>] [-n] <name>
The following table explains the parameters you can specify when using the fis create
command:

Parameter Explanation

-b <memory base address> The address in memory of the image to write to Flash.
This defaults to the last image loaded by the load
command.

-l <image length> The length of the image in Flash. This defaults to the
length of an existing image with the same name or to the
size of the last image loaded with the load command
(rounded up to a whole erase block).
This corresponds to the Size parameter described on
page 60.

-s <data length> The length of the data stored in this image, which
defaults to the length of the last image loaded with the
load command (rounded up to a whole erase block).
This corresponds to the Data Length parameter
described on page 60.

-f <flash address> The offset in Flash where this image resides. FIS
defaults to trying any region of unallocated Flash large
enough for the image being created.
This corresponds to the Flash Base parameter
described on page 60.

-e <entry point> The entry point of this image, which defaults to the base
address of the last image loaded with the load
command.
This corresponds to the Entry Point parameter
described on page 60.

-r <ram address> The address this image is to be loaded to. This defaults
to the address given by -b.
This corresponds to the Memory Base parameter
described on page 60.

-n If given, fis create only updates the image table and not
the image itself.

<name> The name of the image.

AEL Embedded Linux Technical Manual RedBoot

© 2007 Arcom Issue I 62

For example, the following command creates an image table entry named ‘application’:
RedBoot> fis create -f 0x00002000 -l 0xfe000 -b 0x200000 -e 0x200000 -n application

This does not update the image itself. The image resides from offset 0x00002000 to
0x00100000 in Flash and has a memory address and entry point of 0x200000.

More commonly, only the –f and –l options are required. For example to create an
image named ‘kernel’ at offset 0x200000 in Flash with length 0x100000.

RedBoot> fis create -f 0x200000 -l 0x0x100000 kernel
The image data and other parameters are taken from the preceding load command.

Updating a single FIS image
Once the image has been loaded into RAM you can use the fis create command to
update it. The location of the image in RAM and the size is remembered from the last
load command. For example, to update a partition named ‘filesystem’, enter the
following (assuming you have already loaded the image into RAM as described
previously):
RedBoot> fis create filesystem

Loading a Flash image into RAM
An image that is stored in the Flash can be loaded into RAM using the fis load
command. By default the image is loaded to the RAM address stored in the partition
table entry (supplied by the –r or –b parameters to fis create). The RAM address can
be overridden using the –b parameter. For example, to load the image named ‘kernel’
into RAM at the address given by the Memory Base property in the partition table entry:
RedBoot> fis load kernel

To load the image named ‘kernel’ to the base of available memory instead of the
address stored in the partition table:
RedBoot> fis load –b %{FREEMEMLO} kernel

Unlocking the Flash
Some Flash devices require the Flash to be unlocked before writing. The fis unlock
command is therefore provided on boards with these devices. This command takes
either a Flash offset to start unlocking from (using the –f parameter) and a length in
bytes to unlock (using the –l parameter), or the name of an existing Flash image to
unlock.

To unlock the entire Flash enter the following (where FLASH_SIZE is the size in bytes
of the Flash device):
RedBoot> fis unlock –f 0x0 –l <FLASH_SIZE>

To unlock a FIS partition named ‘filesystem’:
RedBoot> fis unlock filesystem

AEL Embedded Linux Technical Manual RedBoot

© 2007 Arcom Issue I 63

Updating the entire Flash
As well as updating individual portions of the Flash, it may also be desirable to reload
the entire Flash array, for example to reload the Flash image the board shipped with.
To update the entire Flash you must first load the image into RAM as described in the
section Loading images into RAM on page 57. Once the image is in RAM you may
need to unlock the Flash, as described above, before using the fis write command to
write the image into Flash.
RedBoot> load –r –b %{FREEMEMLO} flash.img
RedBoot> fis unlock –f 0 –l <FLASH_SIZE>
RedBoot> fis write –f 0x0 –b %{FREEMEMLO} –l <FLASH_SIZE>

FLASH_SIZE is the size of the Flash in bytes. For an F16 board this would be
0x1000000.

Executing an image
There are two commands that can be used to execute an application or another
operating system under RedBoot. They are go and exec. Typically the go command is
used to execute an application while exec is primarily designed to launch Linux.

go
The go command jumps directly to the supplied virtual address. If no address is given,
it either jumps to the entry address of the most recently loaded image (which could be
specified by the FIS table entry), or it may default to the load address of the image.

The MMU is left enabled and set up and the processor is left in privileged mode. For
example, if your application binary is loaded and linked to run at virtual address
0x200000, the following command jumps to the application:
RedBoot> go 0x200000
At this point, control is transferred directly to your application at 0x200000. The
application may choose to continue using the existing MMU settings or may tear down
the current configuration and reinitialize using the desired options.

exec

The exec command disables the MMU before jumping to the physical address supplied.
The primary purpose of this command is to execute a Linux kernel image, but it could
be used to launch any application that has been designed to be launched in this way.

When entering the exec command, you can specify the following parameters:
exec [-b <virtual address>] [-l <length>] [-c “command line”] [<entry point>]

AEL Embedded Linux Technical Manual RedBoot

© 2007 Arcom Issue I 64

These parameters are explained in the following table:

Parameter Action

-b <virtual address> The virtual base address of the image. This defaults to the
base address of the last loaded image.

-l <length> The length of the image, in bytes. This defaults to the length
of the last image loaded.

-c “command line” The command line to pass to Linux (or the application).

<entry point> The physical address of the entry point of the application.

AEL Embedded Linux Technical Manual Appendix A - Contacting Arcom

© 2007 Arcom Issue I 65

Appendix A - Contacting Arcom
Arcom sales

Arcom’s sales team is always available to assist you in choosing the board that best
meets your requirements.

Arcom
7500W 161st Street
Overland Park
Kansas
66085
USA

Tel: 913 549 1000
Fax: 913 549 1002
E-mail: us-sales@arcom.com

Comprehensive information about our products is also available at our web site:
www.arcom.com.

While Arcom’s sales team can assist you in making your decision, the final
choice of boards or systems is solely and wholly the responsibility of the buyer.
Arcom’s entire liability in respect of the boards or systems is as set out in
Arcom’s standard terms and conditions of sale. If you intend to write your own
low level software, you can start with the source code on the disk supplied.
This is example code only to illustrate use on Arcom’s products. It has not been
commercially tested. No warranty is made in respect of this code and Arcom
shall incur no liability whatsoever or howsoever arising from any use made of
the code.

Arcom technical support
Arcom has a team of dedicated technical support engineers available to provide a quick
response to your technical queries.

Tel: 913 549 1010
Fax: 913 549 1001
E-mail: us-support@arcom.com

Eurotech Group
Arcom is a subsidiary of Eurotech Group. For further details, see www.eurotech.com

mailto:us-sales@arcom.com
http://www.arcom.com/
mailto:us-support@arcom.com
http://www.eurotech.com

AEL Embedded Linux Technical Manual Appendix B - Software sources

© 2007 Arcom Issue I 66

Appendix B - Software sources
The source for a component consists of the following:

• An upstream source tarball named PACKAGE_VERSION.orig.tar.gz (where
VERSION is the upstream version number).

• A patch containing Arcom’s modifications named PACKAGE_VERSION-
REVISION.diff.gz (where REVISION is Arcom’s revision of the component).

A small number of packages do not include a patch as there are no
modifications to upstream. This is common when Arcom is the upstream author.

Source and binaries for a given component can normally be found on the Development
Kit CD, in the folder /packages/PACKAGE/. The file /packages/index.html contains an
index of all of the packages available on the Development Kit.

Source code to any open source components of AEL Embedded Linux that are not
included on the CD can be supplied by Arcom on request.

AEL Embedded Linux Technical Manual Appendix C - Reference information

© 2007 Arcom Issue I 67

Appendix C - Reference information
Sources of further information are listed below:

Information Where found

General Linux information www.linux.org

Linux kernel www.kernel.org

ARM (and XScale) Linux kernel www.arm.linux.org.uk

GNU GCC www.gnu.org/software/gcc

Linux documentation project www.tldp.org

Linux Standard Base project www.linuxbase.org

The BSD license www.opensource.org/licenses/bsd-
license.html

GNU General Public License (GPL) www.gnu.org/copyleft/gpl.html

GNU Lesser General Public License (LGPL) www.gnu.org/copyleft/lgpl.html

The MIT license www.opensource.org/licenses/mit-
license.html

RUTE: The Rute user’s tutorial and exposition http://rute.sourceforge.net

eCos and RedBoot http://sources.redhat.com/ecos/docs-latest

http://sources.redhat.com/ecos/docs-
latest/ref/redboot.html

http://www.linux.org/
http://www.kernel.org/
http://www.arm.linux.org.uk/
http://www.gnu.org/software/gcc
http://www.tldp.org/
http://www.linuxbase.org/
http://www.opensource.org/licenses/bsd-license.html
http://www.opensource.org/licenses/bsd-license.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/lgpl.html
http://www.opensource.org/licenses/mit-license.html
http://www.opensource.org/licenses/mit-license.html
http://rute.sourceforge.net/
http://sources.redhat.com/ecos/docs-latest
http://sources.redhat.com/ecos/docs-latest/ref/redboot.html
http://sources.redhat.com/ecos/docs-latest/ref/redboot.html

AEL Embedded Linux Technical Manual Appendix D - Acronyms and abbreviations

© 2007 Arcom Issue I 68

Appendix D - Acronyms and abbreviations
BASH Bourne Again SHell
BOOTP BOOTstrap Protocol
BSD Berkeley Software Design
COM Communication port
CPU Central Processing Unit (PXA255)
CMOS Complementary Metal Oxide Semiconductor
DHCP Dynamic Host Configuration Protocol
FIS Flash Image System
FTP File Transfer Protocol
GCC GNU Compiler Collection
GDB GNU DeBugger
GPIO General Purpose Input/Output
GPL General Public License
HTTP Hyper Text Transfer Protocol
ICE In-Circuit-Emulator
IO Input/Output
IPSEC IP SECurity
IPV4 Internet Protocol Version 4
IRQ Interrupt ReQuest line
JFFS2 Journaling Flash File System 2
LCD Liquid Crystal Display
LGPL Lesser General Public License
LSB Linux Standard Base
OS Operating System
RAM Random Access Memory
RTC Real Time Clock
RUTE Rute Users Tutorial and Exposition
SBC Single Board Computer
SDRAM Synchronous Dynamic Random Access Memory
SRAM Static Random Access Memory
SSH Secure SHell
SSID Service Set IDentifier
TCP/IP Transmission Control Protocol/Internet Protocol
TFTP Trivial File Transfer Protocol
TSC1 TouchScreen Controller 1
UART Universal Asynchronous Receiver / Transmitter
USB Universal Serial Bus
VGA Video Graphics Adapter, display resolution 640 x 480 pixels
WEP Wired Equivalent Privacy
WLAN Wireless Local Area Network

AEL Embedded Linux Technical Manual Index

© 2007 Arcom Issue I 69

Index

A
ports · 15
additional functionality · 5
address · 17, 56, 63

image, loading · 58
space · 47
static · 56
TFTP · 58

alias · 56
modules · 22

anti-static · 6
applications

building · 40
compiling · 42
installing · 38, 41
run at boot · 17

AEL Embedded Linux, configuring · 13
authorized keys · 27
automake · 39

B
baud · 15

base rate · 14
binaries · 66
boards supported · 49
boot · 15, 19

loading modules automatically at · 22
BOOTP · 56
build systems, non-standard · 39
building

applications · 5, 40
kernel · 45
libraries · 38
shared libraries · 40

C
COM · 14
compiling kernel · 44
components · 5
configuration

IP · 56
options · 56

contact details · 65

contents · 5
copyright · 2
cross compiling · 31, 36

example · 40
tools · 36

D
data length · 61
deb packages · 35
debian · 32
debugging · 42
development

kit contents · 10
packages · 35

device driver · 21, 22
DHCP · 17, 19
disk space · 34
documents · 7
downloading images · 57
dpkg · 36
drivers · 49

E
encryption · 24
entry point · 60, 61, 64
ethernet configuration · 17
external module · 21, 22
extracting Flash images · 53

F
fconfig · 55
file system · 11

journaling Flash · 11
files

receiving · 53
transferring · 52
transmitting · 53

fingerprint · 25
FIS · 60

partition · 59

AEL Embedded Linux Technical Manual Index

© 2007 Arcom Issue I 70

Flash · 55
address · 61
base · 60
file system · 11
Image System · 60
images, extracting · 53
images, updating · 62
partition · 11
unlocking · 62
updating · 55, 63

RedBoot · 55
footprint · 5
framebuffer resolution · 23

G
GDB · See GNU debugger
gdbserver · 43
GNU debugger · 42

commands · 43
starting · 43

H
handling · 6
help · 36
host

environment, installing · 34
fingerprint · 25
local · 28
name · 19
remote · 28
requirements · 31

hostname · 19
HTTP · 58

I
iface · 17
ifconfig · 17
image

address · 61, 64
creating · 61
length · 61, 64
properties · 60

images
downloading · 55, 57
extracting · 53
updating · 60, 62

implementation · 5
installing

applications · 41
kernel · 46
module · 46
on target · 38

interface
bringing up at boot · 19
configure · 19
configuring · 19
name · 18

IP
address · 17, 56
configuration · 56

IRQ · 14

J
JFFS2 · 11
journaling · 11

K
kernel · 21, 22

building · 45
compiling · 44
configuring · 44
installing · 46
unpacking · 44

key
authentication · 27
authorized · 27
pairs · 27
rsa · 27
shared · 20

keyboard mapping · 13

L
libaim104 · 49
library · 49

building · 38
installing · 38
packages · 29, 35
shared, building · 40

licensing · 6
Linux · 7

Standard Base · 31
load file name · 58
loading · 59
local host · 28
login · 25

session, removing · 15
LSB · See Linux Standard Base

M
makefiles · 39
man utility · 36
manager, window · 30
manual configuration · 19
mapping · 13
mask · 56

AEL Embedded Linux Technical Manual Index

© 2007 Arcom Issue I 71

matchbox window manager · 30
memory base · 60
modems · 52
modinfo · 21
modprobe · 21

configuring · 22
modules

alias · 22
automatic loading · 22
installing · 46
kernel · 21
loading · 21
parameters · 21
removing · 22

mount · 59

N
net mask length · 56
network

configuration · 17
identifier · 20

O
optimized programs · 42

P
packages

adding · 29
converting · 35
deb · 35
files, installing · 29
installing · 35
managing · 29
removing · 29
rpm · 35

packaging · 6
parameters, module · 21
partitions · 11
passwords · 13
PC/104 · 49
peripheral boards · 49
physical address space · 47
port forwarding · 28
ports

serial · 13
tunnel · 28

private key · 27
prompts · 9
public key · 27

R
radio channel · 20
RAM · 12

recovery · 22
RedBoot · 55, 63

aliases · 56
commands · 55
configuring · 55, 56

remote
files · 26
host · 28
login · 25

repair · 22
resolution, framebuffer · 23
route · 17
rpm packages · 35

installing · 35
rsa keys · 27
run automatically · 17
runlevel · 16
runtime packages · 35

S
scp command · 26
secure shell · 24, 26
serial

connection · 52, 58
ports · 13, 15

service start, stop · 16
setserial · 14
sftp command · 26
shared

keys · 20
library, building · 40

software
developing · 31
sources · 66

source code · 65, 66
SREC · 58
SSH · See secure shell
ssh command · 25
SSID · 20
static · 6

address · 56
configuration · 19

storage · 6
supervisor mode · 63
support, technical · 65
symbols, removing · 39
system recovery · 22

T
target, installing applications on · 41
technical support · 65
terms · 8
TFTP · 58
tools, cross compilation · 36

AEL Embedded Linux Technical Manual Index

© 2007 Arcom Issue I 72

touchscreen, calibrating · 23
trademarks · 2
ts_calibrate · 23
tslib · 23
ttyS0 · 15
tunnel · 28

U
UART · 14
unlocking Flash · 62
updating Flash · 55

W
window manager · 30
Wired Equivalent Privacy · 20
wireless network, connecting · 20

X
X server · 30
X Window System · 23

	AEL Embedded Linux Technical Manual
	Contents
	Introduction
	Licensing AEL Embedded Linux components
	Handling your board safely

	About this manual
	Related documents
	Specific terms
	Conventions

	Development Kit CD contents
	File system layout
	Journaling Flash file system
	RAM file system

	Configuring AEL Embedded Linux
	Default passwords
	Keyboard mapping
	Serial port configuration
	System startup scripts
	Making an application run automatically at boot
	Network configuration
	Wireless network configuration
	Configuring and loading kernel modules
	System recovery and single user mode
	Calibrating touchscreens

	Secure Shell (SSH)
	Introduction to SSH
	Using SSH commands
	Public key authentication methods
	Further information about SSH

	Package management
	Removing packages
	Adding packages

	The X Window System
	Window manager
	Using a touchscreen

	Developing software for AEL Embedded Linux
	Host system requirements
	Installing the AEL Embedded Linux host environment
	Installing additional packages into the host environment
	Obtaining help
	Cross compiling applications and libraries
	Cross compilation example
	Debugging applications on the target
	Compiling a kernel
	Common embedded software development tasks

	RedBoot
	The RedBoot command line
	Configuring and using RedBoot
	Loading images into RAM
	Managing images in Flash
	Executing an image

	Appendix A - Contacting Arcom
	Appendix B - Software sources
	Appendix C - Reference information
	Appendix D - Acronyms and abbreviations
	Index

