

LCD Backlight Driver

12 Volt Input

Dual Tube CCFT Inverter

Brightness Control

Physical Specifications

Dimensions: 20mm x 130mm x 13.5mm (0.787" x 5.12" x 0.531")

Weight: 36g (1.28 oz.)

Operating Temp: 0 to 55°C, convection cooling Relative Humidity: 20% to 90%, non-condensing

Storage: -20 to 85°C/5-95% RH Impact Resistance: 50G half wave per 2 msec Vibration Resistance: 10-55-10 Hz/min @ 1.5mm

Input Specifications*

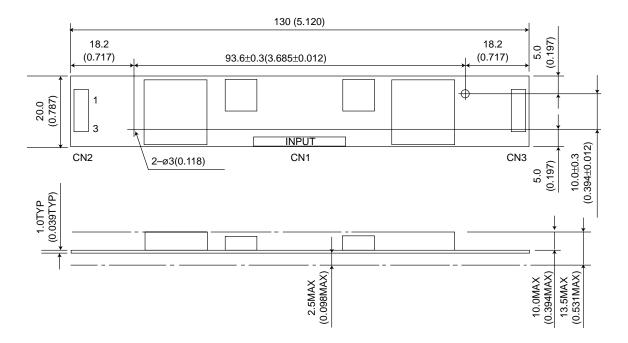
Item	Condition	Standard
Input Voltage Rated Tolerance	Continuous Operation Starting Condition (Discharge Starting Voltage)	12 Vdc 9.6 Vdc - 14.4 Vdc 9.6 Vdc - 14.4 Vdc
Max. Input Current	V _{IN} = 9.6 Vdc Luminance @ Max.	1.2 A
Rush Current	V _{IN} = 14.4 Vdc Luminance @ Max.	5.0 Azero-p/20 µS or less
Max. Input Power	V _{IN} = 9.6 Vdc Luminance @ Max.	11.6 W
On/Off Input Current	On/Off L = 0.0 - 0.4 Vdc V _{IN} = 14.4 Vdc	I _{LOW} = -0.45 mA or more (Lamp Lighting)
	On/Off H = Open or V₁N	 (Lamp Off)

^{*}Above Specifications Occur @ 25 ± 5°C

Output Specifications*

Item	Condition	Stand	Standard	
		MIN	TYP	MAX
Output Voltage (Vrms)	$V_{IN} = 5.0Vdc$	1500	_	_
Tube Current (mArms)	Luminance @ Max.(Vcont = 0.0 V) Luminance @ Min. (Vcont = 2.5 V)	6.3 2.5	7.0 3.0	7.7 3.5
Max. Power Output (W)	V _{IN} = 12 Vdc/Luminance @ Max.	_	_	3.9
Ignition Frequency (kHz)	Luminance @ Max.	50	60	70

^{*}Above specifications occur @ 25 \pm 5°C & VIN = 9.6 - 15 Vdc.


Insulating Withstand Voltage

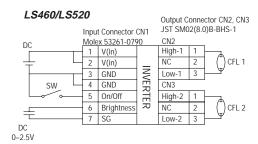
Item	Rating Description	
Insulating Withstand Voltage	Primary - Secondary	2.0 kVA Impulse
Insulating Resistance	Primary - Secondary Winding - Core	500 Vdc More than 100 M Ω

^{*} Apply voltage to pin 6.

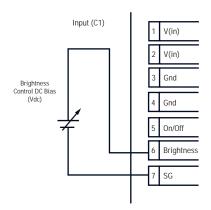
Luminance Variance

Item	Condition	Applied Voltage	Output Current
Luminance @ Max.	Btwn. pin 6 & 7	Vcont = 0.0 V	7.5 mA
Luminance @ Min.	Btwn. pin 6 & 7	Vcont = 2.5 V	3.5 mA

[©] Copyright 1999 Taiyo Yuden (USA), Inc. Specifications subject to change without notice.


TAIYO YUDEN (USA), INC.

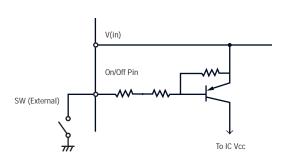
1770 La Costa Meadows Drive San Marcos, CA 92069 (760) 471-4001 / Fax: (760) 471-4021 (800) 493-6835

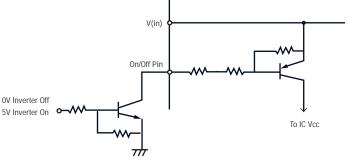

Tech Notes

Connection Diagram

Output Current Optimization Method

Maximum output current can be adjusted by applying bias voltage between brightness control pins as shown below.




DC Bias	Typical Output Current	Maximum Output Current
0.00 V	6.8 mA	7.7 mA
0.75 V	6.5 mA	7.0 mA
1.00 V	6.0 mA	6.5 mA
1.25 V	5.5 mA	6.0 mA
1.50 V	5.0 mA	5.5 mA
1.75 V	4.5 mA	5.0 mA
2.00 V	4.0 mA	4.5 mA
2.25 V	3.5 mA	4.0 mA
2.50 V	3.0 mA	3.5 mA
3.00 V	2.5 mA	3.0 mA

On/Off Control

The on/off control is achieved by using the on/off pin on the input side of LS520. The circuit for the remote on/off circuitry consists of an active low TTL switch. When the circuit is open, the IC Vcc is cut off. When the circuit is closed, IC Vcc is activated. A mechanical switch or a TTL/CMOS gate needs to be placed between the remote on/off pin and ground creating a condition where the circuit is closed to activate the inverter. Either one of the following will be required for the inverter to operate:

One recommended use of logic switch for remote on/off is shown in the diagram below. Electrical specification for on/off terminal is Low 0 to 0.4V, -0.4 mA or higher when switch is closed.

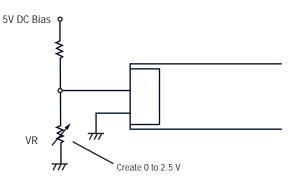
- 1. Tie on/off pin to ground.
- 2. Add mechanical switch between on/off pin and ground, close switch.
- 3. Add TTL/CMOS switch between on/off and ground. Circuit must be closed for unit to operate (as shown above right).

Tech Notes

Brightness Control Using a Potentiometer

The LS520 brightness control is done by applying a DC bias of 0 to 2.5V to the brightness control pins. Unlike the single tube inverters like the LS380s, brightness control for dual tube inverters cannot be accomplished with a potentiometer. The reason for this is that the LS520 has a voltage follower, or a subregulator built into the unit to synchronize both outputs. This voltage follower compensates for resistive load to the brightness control circuitry.

Voltage Follower


BR Control Pin

DC Bias

Voltage Follower

To Regulating IC

However, by using a voltage separator circuit consisting of a potentiometer, a virtual brightness control by potentiometer can be achieved.

Note that current which will run between the brightness control pin will be in a trivial $3.0\mu A$ range.

Mean Time Between Failures (MTBF)

By using the MIL-HDBK 217E Condition Ground Benign method, the MTBF for the LS520 is calculated at 458,000 hours.

(0 to 2.5 V)

7/1

© Copyright 1999 Taiyo Yuden (USA), Inc. Specifications subject to change without notice.

TAIYO YUDEN (USA), INC.

1770 La Costa Meadows Drive San Marcos, CA 92069 (760) 471-4001 / Fax: (760) 471-4021 (800) 493-6835