

ADS document # 110025-10035 Page 1

ADS Windows CE PeliCAN Driver
SJA1000T CAN Controller

Specification Version 1.4

Introduction
The ADS Windows CE PeliCAN driver provides a standard stream interface API to the Philips SJA1000T
CAN controller. This document gives a specification for this API and describes the basic operation of the
driver.

Theory of Operation
This section describes how the ADS driver interacts with the Philips SJA1000T CAN Controller. Details
about the settings and APIs are listed in the following sections, Using the Driver and API Reference.

PeliCAN Mode
The SJA1000T controller can operate in two distinct modes: BasicCAN mode and PeliCAN mode.
BasicCAN supports only standard, 11-bit message identifiers. PeliCAN mode provides the BasicCAN
functionality, but additionally supports extended 29-bit CAN identifiers and is compliant with the
CAN2.0B standard. The ADS Windows CE PeliCAN driver operates the SJA1000T in PeliCAN mode
only.

Receiving CAN Messages
When the CAN controller receives a message, the ADS PeliCAN driver fetches it from the chip and adds it
to a message queue (5000 message maximum) resident in the driver. The driver then notifies applications
that a new message has arrived by pulsing the “message event” and setting the “data ready event” (The
names of these events are configurable in the registry, see Using the Driver: Registry Settings. Also,
further information about the message and data ready events is provided in Using the Driver: Driver
Events). Applications can use the ReadFile function to retrieve CAN messages from the driver receive
queue.

The SJA1000T provides an acceptance filtering feature. Acceptance filtering allows only messages with
identification fields that meet the filter requirements to be received by the CAN controller. The ADS
PeliCAN driver API allows the acceptance filter to be set via the DeviceIoControl function (see API
Reference: I/O Controls). By default the driver accepts all messages it reads from the CAN bus.

Sending CAN Messages
The CAN driver packages and sends CAN messages via the WriteFile function. The call is blocking
only if another message is in the process of being sent.

If the CAN bus is disconnected, or another error condition exists that prevents sending the data, the
WriteFile function returns FALSE and the cause of the error can be obtained using the
GetLastError function (See API Reference: Error Codes).

Windows CE PeliCAN Driver Specification v1.4

Page 2 ADS document # 110025-10035

Driver Priority
You can set the driver priority in the CE registry (see Using the Driver: Registry Settings). Driver priority
can become important in systems that have multiple communication or I/O channels in simultaneous
operation. Set the driver priority based on your application's architecture. Please be advised that
modifying the default priority of the driver can have a negative impact on system performance. Systems
should be thoroughly tested with the new priority setting.

Using the Driver

Driver Name
The CAN driver is referenced with the filename CAN1:. If an ADS product is built with additional CAN
controllers, they are referenced as CAN2:, CAN3:, and so forth.

Files
The following files are important for developers of CAN applications:

PeliCanSja1000.dll CAN driver for 29-bit PeliCAN mode

CANapp.h Header file for CAN driver constants

ADSerror.h Header file for ADS error codes

Registry Settings
Windows CE uses the following system registry keys to configure the driver:

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CAN]
 "Dll"="PeliCanSja1000.dll" ; use ADS PeliCAN SJA1000T driver
 "Priority256"=dword:62 ; CAN driver priority = 0x62
 "MessageEvent"="EV_APP0" ; pulsed when message is received
 "ErrorEvent"="EV_ERR0" ; pulsed when a CAN error occurs
 "OverrunEvent"="EV_OVRERR0" ; pulsed when an overrun occurs
 "DataReadyEvent"="EV_DATA_RDY0" ; set when RX queue is not empty

These settings can be modified by changing the ADSLOAD.REG file or by changing the registry and
persisting it using either ADS tools or hive-based images.

Driver Events
 The CAN driver uses events to notify applications that messages are available, or that an error has
occurred. The names of the events can be modified in the CE registry. The default name and triggering
condition of each event is listed in the table below (Table 1: PeliCAN Driver Events).

 Windows CE PeliCAN Driver Specification v1.4

ADS document # 110025-10035 Page 3

Note that the message, error, and overrun events are all pulsed by the driver, while the data ready event is
set and reset. A pulsed event is automatically unset when all threads waiting on it have been signaled. This
means that a thread must be waiting on the event at the moment it is pulsed in order to receive it, otherwise
it will be missed. For example, if a thread begins waiting for the message event after a message has been
received, the event for that message will be missed. The PeliCAN driver also provides a data ready event
that is set when messages are ready in the receive queue, and reset when the queue is empty. The decision
to use either the message event or data ready event to detect new CAN messages should depend on the
application architecture.

Table 1: PeliCAN Driver Events

Registry Entry Default Event
Name*

Condition

“MessageEvent” “EV_APP0” Pulsed when each new CAN message arrives in the
queue.

“ErrorEvent” “EV_ERR0” Pulsed when the SJA1000T input buffer has
overflowed (DOI bit is set in the SJA1000T interrupt
register).
You may need to increase the CAN thread priority
so the driver can service incoming messages more
quickly.

“OverrunEvent” “EV_OVRERR0” Pulsed when EI (Error Warning Interrupt) or BEI
(Bus Error Interrupt) bits in the SJA1000T interrupt
register have been set.

“DataReadyEvent” “EV_DATA_RDY0” Set when there are messages in the receive queue.
Reset when the queue is empty.

*Default event name for first CAN controller (CAN1:). For additional controllers the default event
names are appended with 1, 2,… etc.

Windows CE PeliCAN Driver Specification v1.4

Page 4 ADS document # 110025-10035

API Reference
Windows CE applications access the ADS PeliCAN driver using the stream interface functions
(CreateFile, ReadFile, WriteFile and DeviceIoControl). Usage of these functions with
examples is provided here.

HANDLE CreateFile(lpFileName, dwDesiredAccess, dwShareMode, lpSecurityAttributes,
dwCreationDispostion, dwFlagsAndAttributes, hTemplateFile)

Opens the CAN port and returns a handle to access it with. Returns NULL if an error occurred.
GetLastError can be used to retrieve a specific error code. ADS error codes are listed in the file
ADSerror.h.

Example:
HANDLE hCanPort;
hCanPort = CreateFile(_T("CAN1:"),

GENERIC_WRITE | GENERIC_READ,
0,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL);

BOOL ReadFile(hFile, lpBuffer, nNumberOfBytesToRead,
lpNumberOfBytesRead, lpOverlapped)

Reads one or more messages from the CAN receive queue and stores them in the CAN_MSG structure
array referenced by lpBuffer. The number of messages to read is determined by the
nNumberOfBytesToRead parameter. nNumberOfBytesToRead should be the number of messages to
read, multiplied by sizeof(CAN_MSG). ReadFile returns TRUE if successful or FALSE if there
was an error. ReadFile will return successfully even if there are fewer messages in the queue than
were requested. When ReadFile returns successfully, lpNumberOfBytesRead will reference a value
equal to the number of messages actually read multiplied by sizeof(CAN_MSG).

Example:
CAN_MSG RxCanMsg[10];
DWORD dwBytesRead;

// Read one CAN message into RxCanMsg[0]
ReadFile(hCanPort, &RxCanMsg[0], sizeof(CAN_MSG), &dwBytesRead, NULL);
printf(“Read %d CAN messages.\r\n”, dwBytesRead / sizeof(CAN_MSG));

// Read nine CAN messages into RxCanMsg[1]-RxCanMsg[9]
ReadFile(hCanPort, &RxCanMsg[1], 9 * sizeof(CAN_MSG), &dwBytesRead, NULL);
printf(“Read %d CAN messages.\r\n”, dwBytesRead / sizeof(CAN_MSG));

BOOL WriteFile(hFile, lpBuffer, nNumberOfBytesToWrite,
lpNumberOfBytesWritten, lpOverlapped)

Writes one or more CAN messages from the CAN_MSG structure array referenced by lpBuffer to the
CAN bus. The number of messages to write is determined by the nNumberOfBytesToWrite parameter.
nNumberOfBytesToWrite should be the number of messages to write, multiplied by
sizeof(CAN_MSG). Returns TRUE if successful or FALSE if there was an error. If the write
completes successfully, lpNumberOfBytesRead will reference a value equal to the number of messages

 Windows CE PeliCAN Driver Specification v1.4

ADS document # 110025-10035 Page 5

written multiplied by sizeof(CAN_MSG). If the SJA1000T is in the BUS OFF state, WriteFile will
fail and GetLastError will return the CAN_ERROR_BUS_OFF error code.

Example:
CAN_MSG TxCanMsg[10];
DWORD dwBytesWritten;

... (initialize TxCanMsg array) ...

// Write one CAN message (TxCanMsg[0]) to the bus.
WriteFile(hCanPort, &TxCanMsg[0], sizeof(CAN_MSG), &dwBytesWritten, NULL);
printf(“Wrote %d CAN messages.\r\n”, dwBytesWritten / sizeof(CAN_MSG));

// Write nine CAN messages (TxCanMsg[1] – TxCanMsg[9]) to the bus.
WriteFile(hCanPort, &TxCanMsg[1], 9 * sizeof(CAN_MSG), &dwBytesWritten, NULL);
printf(“Wrote %d CAN messages.\r\n”, dwBytesWritten / sizeof(CAN_MSG));

BOOL DeviceIoControl(hDevice, dwIoControlCode, lpInBuffer,
nInBufferSize, lpOutBuffer, nOutBufferSize, lpBytesReturned,
lpOverlapped)

Provides an additional set of CAN functions. Returns TRUE if successful or FALSE if there is an
error. The available I/O control functions are listed in the next section. Input parameters are passed in
through lpInBuffer, and output data is returned via lpOutBuffer. nInBufferSize and nOutBufferSize are
required to specify the size of the input and output buffers. The lpBytesReturned parameter is not
used.

Example:
UINT nNumMessages = 0;

DeviceIoControl(hCanPort,

IOCTL_CAN_GET_NUM_MSGS,
NULL,
0,
&nNumMessages,
sizeof(UINT),
NULL,
NULL);

BOOL CloseHandle(hObject)
Closes the CAN port referenced by hObject. Returns TRUE if successful or FALSE if there is an
error.

Example:
CloseHandle(hCanPort);

DWORD Seek(hOpenContext, Amount, Type)
Calls to the Seek function have no effect and always return 0xFFFFFFFF.

Windows CE PeliCAN Driver Specification v1.4

Page 6 ADS document # 110025-10035

I/O Controls
The I/O control codes listed below provide access to additional functionality in the ADS PeliCAN driver.
Usage of DeviceIoControl was described in the previous section.

IOCTL_CAN_SET_ACCEPTANCE_FILTER (0x01): Sets the acceptance filter. The lpInBuffer
parameter to DeviceIoControl must reference the CAN_MSG_FILTER structure that contains the
new filter settings. Set the nInBufferSize parameter to sizeof(CAN_MSG_FILTER).

IOCTL_CAN_GET_ACCEPTANCE_FILTER (0x02): Retrieves the current acceptance filter settings.
The lpOutBuffer parameter to DeviceIoControl must reference the CAN_MSG_FILTER
structure that will receive the filter settings. Set the nOutBufferSize parameter to
sizeof(CAN_MSG_FILTER).

IOCTL_CAN_SET_BAUDRATE (0x03): Sets the CAN baudrate to the closest possible rate to the value
provided. IOCTL_CAN_GET_BAUDRATE can be used to read the actual value from the CAN chip. The
lpInBuffer parameter to DeviceIoControl must reference a ULONG typed variable that contains
the new baudrate in units of kilobits per second. Set the nInBufferSize parameter to
sizeof(ULONG).

IOCTL_CAN_GET_BAUDRATE (0x04): Returns the current CAN baudrate as read from the CAN
chip. The lpOutBuffer parameter to DeviceIoControl must reference the ULONG typed variable
that will receive the current baudrate. Set the nOutBufferSize parameter to sizeof(ULONG).

IOCTL_RESET_CHIP (0x05): Resets the SJA1000T CAN controller. Does not require any I/O
parameters.

IOCTL_CAN_GET_STATUS_REG (0x07): Returns the current state of the SJA1000T status register
(SJASR). The lpOutBuffer parameter to DeviceIoControl must reference the BYTE typed
variable that will receive the status register state. Set the nOutBufferSize parameter to
sizeof(BYTE).

IOCTL_CAN_CLEAR_QUEUE (0x08): Flushes the driver’s receive queue. Does not require any I/O
parameters.

IOCTL_CAN_GET_NUM_MSGS (0x09): Returns the number of CAN messages currently stored in the
driver receive queue. The lpOutBuffer parameter to DeviceIoControl must reference the UINT
typed variable that will receive the number of messages. The nOutBufferSize parameter must be set
to sizeof(UINT).

 Windows CE PeliCAN Driver Specification v1.4

ADS document # 110025-10035 Page 7

IOCTL_CAN_GET_SAMPLE_POINT (0x0A): Returns the current sample point as a percentage (i.e. a
returned value of 75 should be interpreted as 75%). The lpOutBuffer parameter to DeviceIoControl must
reference the ULONG typed variable that will receive the sample point value. Set the nOutBufferSize
parameter to sizeof(ULONG).

IOCTL_CAN_SET_SAMPLE_POINT (0x0B): Sets the CAN sample point as the close as possible to
the value provided. The input value will be interpreted as a percentage (i.e. an integer value of 75 will
result in a sample point at 75%) and must be within the range of 0 to 100. IOCTL_CAN_GET_SAMPLE
_POINT can be used to read the actual value from the CAN chip. The lpInBuffer parameter to
DeviceIoControl must reference a ULONG typed variable that contains the new sample point. Set the
nInBufferSize parameter to sizeof(ULONG).

IOCTL_GET_DRIVER_VERSION (0xA0): Retrieves the specification version that the current driver
adheres to in null-terminated string format (i.e. “1.2\0”). The lpOutBuffer parameter to
DeviceIoControl must be a pointer to a wchar_t buffer of sufficient size to accept the string or a
failure will occur.

Error Codes

If a driver function call fails, calling GetLastError may return one of the following error codes defined in
ADSError.h:

CAN_ERROR_OUTPUT_BUFFER_TOO_SMALL

The output buffer provided is insufficient to contain the data required.

CAN_ERROR_INPUT_BUFFER_WRONG_SIZE

 The input buffer provided does not match the size expected.

CAN_ERROR_INVALID_HANDLE

 The CAN port handle is invalid.

CAN_ERROR_CANNOT_OPEN_DEVICE

 The CAN port cannot be opened.

CAN_ERROR_CANNOT_ALLOC_MEMORY

 There was an error while attempting to allocate memory.

CAN_ERROR_BUS_OFF

The SJA1000T CAN controller is currently in the BUS_OFF state. When this error occurs call
DeviceIoControl with the IOCTL_RESET_CHIP constant.

CAN_ERROR_INPUT_OUT_OF_RANGE

The value of the input provided was outside the valid range.

Windows CE PeliCAN Driver Specification v1.4

Page 8 ADS document # 110025-10035

CAN Application Header File: CANApp.h

// CANapp.h
// 720020-11851
//
// Applied Data Systems
//
// Description
// -----------
// This header file is to be used by applications interfacing
// with the ADS PeliCAN v1.1 Driver. It contains all necessary device
// IOCTL, flag, and message definitions.

// CAN message structure
typedef struct _CAN_MSg
{
 SHORT length;
 ULONG id;
 SHORT flags;
 union
 {
 BYTE data[8];
 WORD wData[4];
 DWORD dwData[2];
 LONGLONG lData;
 };
}CAN_MSG;

// Definitions to use for CAN_MSG flags
#define MSG_RTR (1<<0) // Remote Transmission Request flag
#define MSG_EXT (1<<1) // Extended identifier format flag

/* Acceptance filter message structure */
typedef struct __CAN_MSG_FILTER
{
 BOOL mode ; // set to 0 for dual filter mode, or 1 for single
 BYTE code0 ;
 BYTE code1 ;
 BYTE code2 ;
 BYTE code3 ;
 BYTE mask0 ;
 BYTE mask1 ;
 BYTE mask2 ;
 BYTE mask3 ;
} CAN_MSG_FILTER, *PCAN_MSG_FILTER;

#define IOCTL_CAN_SET_ACCEPTANCE_FILTER 0x01
#define IOCTL_CAN_GET_ACCEPTANCE_FILTER 0x02
#define IOCTL_CAN_SET_BAUDRATE 0x03
#define IOCTL_CAN_GET_BAUDRATE 0x04
#define IOCTL_RESET_CHIP 0x05
#define IOCTL_SEND_COMMAND 0x06
#define IOCTL_CAN_GET_STATUS_REG 0x07
#define IOCTL_CAN_CLEAR_QUEUE 0x08
#define IOCTL_CAN_GET_NUM_MSGS 0x09
#define IOCTL_CAN_GET_SAMPLE_POINT 0x0A
#define IOCTL_CAN_SET_SAMPLE_POINT 0x0B
#define IOCTL_GET_DRIVER_VERSION 0xA0

 Windows CE PeliCAN Driver Specification v1.4

ADS document # 110025-10035 Page 9

Implementation Matrix
The following table illustrates the ADS run-time image in which each version of the CAN driver was
included. For example, version 1.0 of the driver was first included in AGX image 4.20.09.

CAN Specification

ADS Product v 0.1 v1.0 v1.1 v1.2 v1.3 v1.4

AGX 4.20.09 4.20.10

VGX 4.20.12 4.20.26

GCX 4.20.05 4.20.07 4.20.09

Windows CE PeliCAN Driver Specification v1.4

Page 10 ADS document # 110025-10035

Document History
The following list summarizes the changes made between releases of this document.

REV DESCRIPTION BY
0 First version of document template 9/16/04 ak
1 Initial release. 11/15/04 jc

2 • Changed CAN_MSG struct format in CANapp.h
• Updated Implementation Matrix 11/24/04 jc

3

• Added Specification History section
• Added documentation for IOCTL_GET_DRIVER_VERSION
• Updated Implementation Matrix
• Minor formatting and text changes

11/30/04 ct

4 • Minor wording changes, fixed header and footer 1/14/05 ct

5

• Modified description of reads and writes to include multiple
message support.

• Added documentation for DataReadyEvent, with more detailed
description of how the driver sets events.

• Added documentation for IOCTL_GET_SAMPLE_POINT and
IOCTL_SET_SAMPLE_POINT.

• Modified description of IOCTL_SET_BAUDRATE and
IOCTL_GET_BAUDRATE to point out that the actual baudrate
set is a best fit for the value provided.

• Added documentation for CAN_ERROR_INPUT_OUT
_OF_RANGE error code.

5/17/05 jc

 Windows CE PeliCAN Driver Specification v1.4

ADS document # 110025-10035 Page 11

Specification History
The following list summarizes the changes made between versions of the specification.

REV DESCRIPTION BY
1.0 Initial release. 11/15/04 jc
1.1 Changed CAN_MSG struct format 11/24/04 jc

1.2
• Added IOCTL_GET_DRIVER_VERSION
• IOCTL_CAN_READ_ACCEPTANCE_FILTER changed to

IOCTL_CAN_GET_ACCEPTANCE_FILTER
11/30/04 ctacke

1.3 • ReadFile and WriteFile support multiple messages
• Added DataReadyEvent 3/11/05 jc

1.4

• Added IOCTL_CAN_GET_SAMPLE_POINT and
IOCTL_CAN_SET_SAMPLE_POINT

• Modified IOCTL_CAN_GET_BAUDRATE to read the actual
baudrate from the CAN chip.

• Added CAN_ERROR_INPUT_OUT_OF_RANGE error code.

5/16/05 jc

