

ADS Windows CE CAN Driver
for the SJA1000T CAN Controller

Specification Version 1.5

ADS document # 110025-10036

© 2006 Applied Data Systems

10260 Old Columbia Road, Columbia, MD 21046 USA

www.applieddata.net

301.490.4007

ADS document # 110025-10036 Page 2

Table of Contents

Table of Contents ... 2

Document History.. 4

Driver Revision History ... 5

Known Issues ... 5

1 Introduction ... 6

1.1 Features ... 6
1.2 Background ... 6

2 Driver Theory of Operation ... 6

2.1 PeliCAN Mode .. 7
2.2 Receiving CAN Messages ... 7
2.3 Sending CAN Messages .. 7
2.4 Driver Priority ... 8
2.5 Sleep/Wake Behavior .. 8
2.6 Reentrancy and Multi-threaded Behavior................................ 8

3 Application Architectures and Driver Usage ... 8

3.1 Structure of a CAN Application .. 9
3.2 Adding Error Handling.. 9

4 Driver Reference.. 10

4.1 Driver Name .. 10
4.2 Default Settings ... 10
4.3 Files ... 10

PeliCanSja1000.dll
CANapp.h
ADSerror.h

4.4 Registry Settings.. 10
Dll
Priority256
MessageEvent
ErrorEvent
DataReadyEvent
Deprecated Registry Keys

4.5 API Reference ... 12
4.5.1 CreateFile()
4.5.2 CloseHandle()
4.5.3 Seek()
4.5.4 ReadFile()
4.5.5 WriteFile()
4.5.6 DeviceIoControl()

4.6 I/O Controls... 17
4.6.1 IOCTL_CAN_SET_ACCEPTANCE_FILTER (0x01)
4.6.2 IOCTL_CAN_GET_ACCEPTANCE_FILTER (0x02)
4.6.3 IOCTL_CAN_SET_BAUDRATE (0x03)
4.6.4 IOCTL_CAN_GET_BAUDRATE (0x04)
4.6.5 IOCTL_CAN_RESET_CHIP (0x05)
4.6.6 IOCTL_CAN_GET_STATUS_REG (0x07)
4.6.7 IOCTL_CAN_CLEAR_QUEUE (0x08)
4.6.8 IOCTL_CAN_GET_NUM_MSGS (0x09)
4.6.9 IOCTL_CAN_GET_SAMPLE_POINT (0x0A)
4.6.10 IOCTL_CAN_SET_SAMPLE_POINT (0x0B)
4.6.11 IOCTL_CAN_FLUSH_MSGS (0x0C)
4.6.12 IOCTL_CAN_GET_DRIVER_VERSION (0xA0)

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 3

4.7 Driver Events... 22
4.7.1 Data in Receive Queue
4.7.2 New Message Received
4.7.3 CAN Controller Buffer Overflow
4.7.4 CAN Controller Error
4.7.5 CAN Data Queue Full
4.7.6 CAN Queue Threshold Reached

4.8 Error Codes.. 24
CAN_ERROR_OUTPUT_BUFFER_TOO_SMALL
CAN_ERROR_INPUT_BUFFER_WRONG_SIZE
CAN_ERROR_INVALID_HANDLE
CAN_ERROR_CANNOT_OPEN_DEVICE
CAN_ERROR_CANNOT_ALLOC_MEMORY
CAN_ERROR_BUS_OFF
CAN_ERROR_INPUT_OUT_OF_RANGE

5 Creating a CAN Application.. 25

5.1 Header Files... 25
CANApp.h

5.2 Sample Applications.. 26

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 4

Document History
The following list summarizes the changes made between releases of this document. Changes to the

driver specification are listed in the following section.

REV DESCRIPTION BY

0 First version of document template 9/16/04 ak

1 Initial release. 11/15/04 jc

2
• Changed CAN_MSG struct format in CANapp.h

• Updated Implementation Matrix
11/24/04 jc

3

• Added Specification History section

• Added documentation for IOCTL_GET_DRIVER_VERSION

• Updated Implementation Matrix

• Minor formatting and text changes

11/30/04 ct

4 • Minor wording changes, fixed header and footer 1/14/05 ct

5

• Modified description of reads and writes to include multiple

message support.

• Added documentation for DataReadyEvent, with more detailed

description of how the driver sets events.

• Added documentation for IOCTL_GET_SAMPLE_POINT and

IOCTL_SET_SAMPLE_POINT.

• Modified description of IOCTL_SET_BAUDRATE and

IOCTL_GET_BAUDRATE to point out that the actual baudrate

set is a best fit for the value provided.

• Added documentation for CAN_ERROR_INPUT_OUT

_OF_RANGE error code.

5/17/05 jc

6

• Reformatted document and document styles

• Added table of contents

• Added Background and Features sections

• Added sections for re-entrancy, defaults, known issues

• Added section about Sleep/Wake behavior

• Rewrote Driver Priority section

• Added documentation for IOCTL_CAN_FLUSH_MSGS

• Added documentation for events EV_CAN_DATAQ_FULL and

EV_CAN_DATAQ_THRESHOLD

• Added overview diagram

• Added MSG_EXT message detail

• Removed Implementation Matrix

10/2/06 jj

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 5

Driver Revision History
The following list summarizes the changes made between versions of the specification.

REV DESCRIPTION BY

1.0 Initial release. 11/15/04 jc

1.1 Changed CAN_MSG struct format 11/24/04 jc

1.2

• Added IOCTL_GET_DRIVER_VERSION

• IOCTL_CAN_READ_ACCEPTANCE_FILTER changed to

IOCTL_CAN_GET_ACCEPTANCE_FILTER

11/30/04 ct

1.3
• ReadFile and WriteFile support multiple messages

• Added DataReadyEvent
3/11/05 jc

1.4

• Added IOCTL_CAN_GET_SAMPLE_POINT and

IOCTL_CAN_SET_SAMPLE_POINT

• Modified IOCTL_CAN_GET_BAUDRATE to read the actual

baud rate from the CAN controller.

• Added CAN_ERROR_INPUT_OUT_OF_RANGE error code.

5/16/05 jc

1.5

• Added IOCTL_CAN_FLUSH_MSGS

• Added events EV_CAN_DATAQ_FULL and

EV_CAN_DATAQ_THRESHOLD

9/21/06 cb

Known Issues
• If a CAN Controller hardware error is encountered during a CreateFile() operation, the driver may

hang and GetLastError() will not show the error.

• If CloseHandle() is given an invalid handle, it will return FALSE without GetLastError() showing

the error.

• If KernelIoControl() is given an invalid handle, it will return FALSE without GetLastError()

showing the error.

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 6

1 Introduction
This document describes the Windows CE driver provided by Applied Data Systems for interfacing to

the Philips SJA1000T CAN controller found on many ADS products. This document specifies and

describes basic operation of the driver.

1.1 Features

The ADS CAN driver features the following functionality:

• Automatic buffering of incoming messages

• Transfer single or multiple messages with each call

• Configurable baud rate and sample point

• Hardware acceptance filter

• Windows CE events that indicate messages received, buffer status and error conditions

• Ability to read status register and reset CAN controller

• Get status of receive queue

• Discard messages from receive queue

1.2 Background

Controller Automation Network, known as CAN or CAN bus, is a communications standard initially

developed for the automotive industry.

A “message” is defined as a fixed 8 bytes of data with another 8 bytes of header information. This

definition is in the CANApp.h file under the name CAN_MSG.

2 Driver Theory of Operation
This section describes how the ADS driver interacts with the Philips SJA1000T CAN Controller.

Specific details about the settings and APIs are listed in the following sections, and API Reference.

The ADS CAN driver provides a standard Windows CE stream interface driver to access CAN

functionality on ADS products.

The following diagram illustrates the relationship between the application, driver and controller. For a

write operation, the application calls WriteFile() which directs the CAN driver to send the output

buffer to the hardware transmit circuitry. For read operations, the Interrupt Service Thread of the CAN

driver receives interrupts from the hardware that indicate there is a message to read. The CAN driver

reads and adds this message to the receive buffer, then generates a read event to the application. The

application calls ReadFile() to read the message from the driver’s receive buffer. Any error

interrupts from the CAN controller are sent via the Interrupt Service Thread to the application as an

error event.

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 7

2.1 PeliCAN Mode

The SJA1000T controller supports two distinct modes of operation: BasicCAN and PeliCAN.

BasicCAN mode supports standard, 11-bit message identifiers. PeliCAN mode provides all BasicCAN

functionality and further supports extended, 29-bit CAN identifiers and full CAN2.0B compliance. To

transmit 11-bit message identifiers, clear the MSG_EXT bit as defined in the CANApp.h header file

(see Creating a CAN Application:5.1 Header Files). The ADS Windows CE CAN driver operates

the SJA1000T in PeliCAN mode only.

2.2 Receiving CAN Messages

A CAN message is a fixed length of 8 bytes and 8 bytes of formatting. When the CAN controller

receives a message from the remote system, the ADS CAN driver fetches it from the chip and adds it

to a message queue resident in the driver. The driver then notifies applications that a new message has

arrived by pulsing the "message event" and setting the "data ready event." Applications then use the

ReadFile() function to retrieve CAN messages from the driver receive queue. The receive queue

has a 5000 message maximum.

The SJA1000T provides an acceptance filtering feature. Acceptance filtering allows only messages

with identification fields that meet the filter requirements to be received by the CAN controller. Set

the acceptance filter with the DeviceIoControl() function (see Driver Reference:4.6 I/O

Controls). The default message filter accepts all messages from the CAN bus.

2.3 Sending CAN Messages

The CAN driver packages and sends CAN messages with the WriteFile() function. The call is

blocking only if another message is in the process of being sent.

If the CAN bus is disconnected, or another error condition exists that prevents sending the data, the

WriteFile() function returns FALSE and the cause of the error can be obtained using the

GetLastError() function (See Driver Reference:4.8 Error Codes).

CAN Driver

User Application

SJA1000T Controller

Read Thread

Receive

Buffer

(IST)Interrupt

Service Thread

Write Thread

Event handler

D
at

a

In
te

rr
u
p

t

D
at

a

WriteFile() ReadFile()

D
at

a

D
at

a

Transmit

Receive

E
rr

o
r

E
v
en

t

R
ea

d
 E

v
en

t

Data

Data Ready

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 8

2.4 Driver Priority

Driver priority is important in multi-threaded applications, especially those with multiple

communication or I/O channels in simultaneous operation. Set the driver priority relatively high to

ensure that the CAN controller is serviced promptly and its buffer does not overflow. The priority of

the application thread that reads from the CAN buffer should also be high, but set slightly lower than

that of the driver. Set the driver priority in the CE registry (see Driver Reference:4.8 Error Codes).

Note that heavy CAN bus traffic can slow down performance of a system. Use message filtering

where possible and pay careful attention to the architecture of message processing loops. Test systems

thoroughly after any changes in message priority.

2.5 Sleep/Wake Behavior

The ADS CAN driver supports Windows CE Sleep mode. When the system goes to sleep, the driver

turns off the CAN controller and transceiver. Upon wakeup the driver powers up the CAN circuits and

restores all driver settings and filters.

If a transmission is in progress when the system goes to sleep, the transmission will be interrupted but

no data will be lost. Transmission resumes when the system wakes up.

Data stored in the receive buffer remains intact during sleep. The driver does not receive any messages

and the CAN controller does not respond to other devices while the system is in Sleep mode. Sleep

mode must be entered with care because data may be lost if the system enters sleep mode during a

receive operation. The system will not wake upon data receipt.

2.6 Reentrancy and Multi-threaded Behavior

The CAN driver can be opened once. For multi-threaded operation, open the CAN driver using

createfile(), then pass the new handle to message processing threads.

All driver operations are atomic, so the driver can support different threads accessing the driver

asynchronously.

3 Application Architectures and Driver Usage
This section describes some common application architectures that work well with the CAN driver.

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 9

3.1 Structure of a CAN Application

A typical application that uses the CAN driver will consists of a main processing loop (or equivalent)

with a spawned thread to process incoming messages.

The following pseudo code illustrates such an application:

Main()

 InitializeCanDriver()

 spawn MessageProcessingThread() for incoming messages

 ...

 transmit CAN messages as needed

 ...

 stop processing thread

 close CAN driver

InitializeCanDriver()

 Open CAN driver

 Set sample point

 Set baud rate

 ...

MessageProcessingThread()

 while(application is running)

 wait for CAN receive event [blocking call]

 while (messages in queue)

 read message

 process message

3.2 Adding Error Handling

The CAN driver generates several events to indicate error conditions. The following pseudo code is

for an error processing thread.

CanErrorProcessingThread()

 while(TRUE)

 wait for CAN error event

 if (error is buffer full)

 increase MessageProcessingThread() priority

 or delete some number of older messages in the queue

 if (error is CAN controller)

 reset CAN controller

 indicate error in service log and/or to user

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 10

4 Driver Reference
This section provides the details needed to write C/C++ application code to access the driver.

4.1 Driver Name

The CAN driver is referenced with the driver name CAN1:. Additional CAN controllers available on

some ADS products are referenced as CAN2:, CAN3:, and so forth.

4.2 Default Settings

The CAN driver starts up with the following default settings:

 Baud rate: 0 kbps

 Sample point: 75 %

ADS recommends that your application set all key parameters for the driver, and that it not rely upon

driver defaults for any settings.

4.3 Files

The following files are needed to develop CAN applications:

PeliCanSja1000.dll
CAN driver described in this specification. This file is automatically loaded at boot by WindowsCE.

CANapp.h
Header file for CAN driver constants and data structures. Include this file in all applications that use

this CAN driver.

ADSerror.h
Header file for ADS error codes. Include this file for error handling.

4.4 Registry Settings

The CAN driver reads the registry for initialization settings at boot time. The first CAN driver's

settings are in the "CAN" key. Additional drivers use the key, "CANn" where n is the driver number.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CAN]

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CAN2]

The driver reads the following registry keys during initialization. The examples indicate the default

values that the driver uses if the registry entries are not present.

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 11

Dll
Sets the name of the CAN driver . Changing this to a non-existent file name prevents the driver from

loading.

"Dll"="PeliCanSja1000.dll" ; use ADS PeliCAN SJA1000T driver

Priority256
Sets the CE driver priority. Values are in hexadecimal. The 256 at the end of the name is a reminder

that the lowest priority is 256 or hexadecimal 0x100.

"Priority256"=dword:62 ; CAN driver priority = 0x62

MessageEvent
Sets the event to be pulsed when a message is received. A new event name may be substituted but if

this key does not exist the event name shown will remain as the default.

"MessageEvent"="EV_APP0" ; pulsed when message is received

ErrorEvent
Sets the event to be pulsed when an error is encountered. A new event name may be substituted but if

this key does not exist the event name shown will remain as the default.

"ErrorEvent"="EV_ERR0" ; pulsed when a CAN error occurs

DataReadyEvent
Sets the event to be set when the queue contains one or more messages. A new event name may be

substituted but if this key does not exist the event name shown will remain as the default.

"DataReadyEvent"="EV_DATA_RDY0" ; set when RX queue is not empty

Deprecated Registry Keys

No deprecated keys at this time.

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 12

4.5 API Reference

The CAN driver follows the Windows CE stream driver interface standard. Stream interface functions

used to access the ADS CAN driver include CreateFile(), ReadFile(), WriteFile(),

CloseHandle() and DeviceIoControl().

4.5.1 CreateFile()

Description: Opens the CAN driver for the specified port.

Prototype: Types shown are defined in winbase.h.

HANDLE CreateFile(

 LPCTSTR lpFileName,

 DWORD dwDesiredAccess,

 DWORD dwShareMode,

 LPSECURITY_ATTRIBUTES lpSecurityAttributes,

 DWORD dwCreationDisposition,

 DWORD dwFlagsAndAttributes,

 HANDLE hTemplateFile

);

Parameters: Values for parameters not shown should be NULL for pointer types and zero for

numeric types.

LPCTSTR lpFileName

[in] Name of CAN driver to open (e.g. "CAN1:", "CAN2:")

Returns: NULL if an error occurs. Use GetLastError() to determine the specific reason

for failure. ADS error codes are listed in the file ADSerror.h.

Availability: CAN driver 1.0 and later.

Blocking: Yes

Remarks: If the driver was not successfully initialized or has already been opened, this sets the

last error to CAN_ERROR_CANNOT_OPEN_DEVICE. A memory allocation error

sets the error to CAN_ERR_R_CANNOT_ALLOC_MEMORY.

Example:

HANDLE hCanPort;

hCanPort = CreateFile(_T("CAN1:"),
 0,

 0,

 NULL,

 0,

 0,

 NULL);

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 13

4.5.2 CloseHandle()

Description: Closes the CAN port referenced by hObject.

Prototype: Types shown are defined in winbase.h.

BOOL CloseHandle(

 HANDLE hObject

);

Parameters:

HANDLE hObject

[in] Handle to close

Returns: TRUE if successful or FALSE if there is an error.

Availability: CAN driver 1.0 and later.

Blocking: Yes

Remarks: The GetLastError() values are not updated.

Example:

CloseHandle(hCanPort);

4.5.3 Seek()

Description: Calls to the Seek() function have no effect and always return 0xFFFFFFFF.

Prototype: DWORD Seek(hOpenContext, Amount, Type)

Returns: 0xFFFFFFFF or -1 in decimal.

Availability: CAN driver v 1.0 and later.

Blocking: No

Remarks: This function included for Windows API compatibility.

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 14

4.5.4 ReadFile()

Description: Reads one or more messages from the CAN receive queue.

Prototype: Types shown are defined in winbase.h.

BOOL ReadFile(

 HANDLE hFile,

 LPVOID lpBuffer,

 DWORD nNumberOfBytesToRead,

 LPDWORD lpNumberOfBytesRead,

 LPOVERLAPPED lpOverlapped

);

Parameters: Values for parameters not shown should be NULL for pointer types and zero for

numeric types.

HANDLE hFile,

[in] CAN driver handle from CreateFile()

LPVOID lpBuffer,

[in] CAN_MSG structure array for retrieved messages

DWORD nNumberOfBytesToRead,

[in] Number of messages to read multiplied by sizeof(CAN_MSG)

LPDWORD lpNumberOfBytesRead,

[out] References a value equal to the number of messages actually read multiplied by

sizeof(CAN_MSG).

Returns: TRUE if successful and FALSE if there was an error. Call GetLastError() for

error information.

Availability: CAN driver v 1.0 and later.

v 1.1 and later use an updated message structure

v 1.3 and later support reading multiple messages.

Blocking: Yes

Remarks: While the ReadFile() function can polled, it is best used in conjunction with the

DataReadyEvent. If the handle or any of the pointer values are invalid the

ERROR_INVALID_PARAMETER value is generated.

Example:

CAN_MSG RxCanMsg[10];

DWORD dwBytesRead;

// Read one CAN message into RxCanMsg[0]

ReadFile(hCanPort, &RxCanMsg[0], sizeof(CAN_MSG), &dwBytesRead, NULL);

printf("Read %d CAN messages.\r\n", dwBytesRead / sizeof(CAN_MSG));

// Read nine CAN messages into RxCanMsg[1]-RxCanMsg[9]

ReadFile(hCanPort, &RxCanMsg[1], 9 * sizeof(CAN_MSG), &dwBytesRead, NULL);

printf("Read %d CAN messages.\r\n", dwBytesRead / sizeof(CAN_MSG));

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 15

4.5.5 WriteFile()

Description: Places one or more messages into the outgoing queue for transmission on the CAN

bus.

Prototype: Types shown are defined in winbase.h.

BOOL WriteFile(

 HANDLE hFile,

 LPCVOID lpBuffer,

 DWORD nNumberOfBytesToWrite,

 LPDWORD lpNumberOfBytesWritten,

 LPOVERLAPPED lpOverlapped

);

Parameters: Values for parameters not shown should be NULL for pointer types and zero for

numeric types.

HANDLE hFile

[in] CAN handle from CreateFile()

LPCVOID lpBuffer

[in] CAN_MSG structure array containing messages to be sent

DWORD nNumberOfBytesToWrite

[in] Number of messages to write, multiplied by sizeof(CAN_MSG)

LPDWORD lpNumberOfBytesWritten

[out] References a value equal to the number of messages actually written multiplied

by sizeof(CAN_MSG).

Returns: Non zero if successful and FALSE if there was an error. Call GetLastError()

for error information

Availability: CAN driver v 1.0 and later.

v 1.1 and later use an updated message structure

v 1.3 and later support reading multiple messages.

Blocking: Yes

Remarks: If the CAN controller is in the BUS OFF state, WriteFile() will fail and

GetLastError() will return the CAN_ERROR_BUS_OFF error code. An invalid

pointer value for lpBuffer or lpNumberOfBytesWritten will generate an

ERROR_INVALID_PARAMETER error and an un-initialized handle generates a

CAN_ERROR_INVALID_HANDLE error.

Example:

CAN_MSG TxCanMsg[10];

DWORD dwBytesWritten;

... (initialize TxCanMsg array) ...

// Write one CAN message (TxCanMsg[0]) to the bus.

WriteFile(hCanPort, &TxCanMsg[0], sizeof(CAN_MSG), &dwBytesWritten, NULL);

printf("Wrote %d CAN messages.\r\n", dwBytesWritten / sizeof(CAN_MSG));

// Write nine CAN messages (TxCanMsg[1] – TxCanMsg[9]) to the bus.

WriteFile(hCanPort, &TxCanMsg[1], 9 * sizeof(CAN_MSG), &dwBytesWritten, NULL);

printf("Wrote %d CAN messages.\r\n", dwBytesWritten / sizeof(CAN_MSG));

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 16

4.5.6 DeviceIoControl()

Description: Provides functions to control operation of the CAN controller and queue.

Prototype: Types shown are defined in winbase.h. The use of parameters

dwIoControlCode, lpInBuffer, nInBufferSize, lpOutBuffer,

and nOutBufferSize are function specific and are described in the Driver

Reference:4.6 I/O Controls section.

BOOL DeviceIoControl(

 HANDLE hDevice,

 DWORD dwIoControlCode,

 LPVOID lpInBuffer,

 DWORD nInBufferSize,

 LPVOID lpOutBuffer,

 DWORD nOutBufferSize,

 LPDWORD lpBytesReturned,

 LPOVERLAPPED lpOverlapped

);

Returns: TRUE if successful and FALSE if there was an error. Call GetLastError() for

error information. If the dwIoControlCode value is not recognized,

GetLastError() returns ERROR_BAD_COMMAND.

Availability: CAN driver 1.0 and later.

Blocking: Yes

Example:

UINT nNumMessages = 0;

DeviceIoControl(hCanPort,

 IOCTL_CAN_GET_NUM_MSGS,

 NULL,

 0,

 &nNumMessages,

 sizeof(UINT),

 NULL,

 NULL

);

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 17

4.6 I/O Controls

The I/O control codes listed below provide access to additional functionality in the ADS CAN driver.

Parameters and execution of DeviceIoControl() was described in the previous section. The

following are a summary of the control codes detailed in this section.

IOCTL_CAN_SET_ACCEPTANCE_FILTER (0x01)

IOCTL_CAN_GET_ACCEPTANCE_FILTER (0x02)

IOCTL_CAN_SET_BAUDRATE (0x03)

IOCTL_CAN_GET_BAUDRATE (0x04)

IOCTL_CAN_RESET_CHIP (0x05)

IOCTL_CAN_GET_STATUS_REG (0x07)

IOCTL_CAN_CLEAR_QUEUE (0x08)

IOCTL_CAN_GET_NUM_MSGS (0x09)

IOCTL_CAN_GET_SAMPLE_POINT (0x0A)

IOCTL_CAN_SET_SAMPLE_POINT (0x0B)

IOCTL_CAN_FLUSH_MSGS (0x0C)

IOCTL_CAN_GET_DRIVER_VERSION (0xA0)

4.6.1 IOCTL_CAN_SET_ACCEPTANCE_FILTER (0x01)

Description: Sets the message acceptance filter.

Parameters: Constants shown are defined in CANApp.h

dwIoControlCode

[in] Set to IOCTL_CAN_SET_ACCEPTANCE_FILTER.

lpInBuffer

[in] Pointer to a CAN_MSG_FILTER structure that contains the new filter settings.

nInBufferSize

 [in] Set to sizeof(CAN_MSG_FILTER).

Availability: CAN driver v 1.2 and later.

Remarks: If nInBufferSize does not match sizeof(CAN_MSG_FILTER),

DeviceIoControl() returns FALSE and GetLastError() will return
CAN_ERROR_INPUT_BUFFER_WRONG_SIZE.

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 18

4.6.2 IOCTL_CAN_GET_ACCEPTANCE_FILTER (0x02)

Description: Retrieves the current acceptance filter settings.

Parameters: Constants shown are defined in CANApp.h

dwIoControlCode

[in] Set to IOCTL_CAN_GET_ACCEPTANCE_FILTER.

lpOutBuffer

[in] Pointer to a CAN_MSG_FILTER structure that contains the new filter settings.

nOutBufferSize

[in] Set to sizeof(CAN_MSG_FILTER).

Availability: CAN driver v 1.2 and later.

Remarks: If nOutBufferSize is less than sizeof(CAN_MSG_FILTER), then

DeviceIoControl() returns FALSE and GetLastError() will return

CAN_ERROR_OUTPUT_BUFFER_TOO_SMALL.

4.6.3 IOCTL_CAN_SET_BAUDRATE (0x03)

Description: Uses provided baud rate and the CAN sample point to generate and set the CAN

baud rate.

Parameters: Constants shown are defined in CANApp.h

dwIoControlCode

[in] Set to IOCTL_CAN_SET_BAUDRATE.

lpInBuffer

[in] References a ULONG typed variable that contains the new baudrate in units of

kilobits per second.

nInBufferSize

[in] Set to sizeof(ULONG).

Remarks: Use IOCTL_CAN_GET_BAUDRATE to determine the actual baud rate set in the

CAN controller.

Availability: CAN driver v 1.0 and later.

Remarks: If nInBufferSize does not match sizeof(ULONG), DeviceIoControl()

returns FALSE and GetLastError() will return

CAN_ERROR_INPUT_BUFFER_WRONG_SIZE.

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 19

4.6.4 IOCTL_CAN_GET_BAUDRATE (0x04)

Description: Returns the current CAN baudrate as read from the CAN chip.

Parameters: Constants shown are defined in CANApp.h

dwIoControlCode

[in] Set to IOCTL_CAN_GET_BAUDRATE.

lpOutBuffer

[in] References the ULONG typed variable that will receive the current baudrate

nOutBufferSize

[in] Set to sizeof(ULONG).

Availability: CAN driver v 1.0 to 1.3 return baud rate stored in driver.

v 1.4 and later read baud rate from CAN controller.

Remarks: If nOutBufferSize is less than sizeof(ULONG), then

DeviceIoControl() returns FALSE and GetLastError() will return

CAN_ERROR_OUTPUT_BUFFER_TOO_SMALL.

4.6.5 IOCTL_CAN_RESET_CHIP (0x05)

Description: Resets the SJA1000T CAN controller.

Parameters: Constants shown are defined in CANApp.h .

dwIoControlCode

[in] Set to IOCTL_CAN_RESET_CHIP.

Availability: CAN driver v 1.0 and later.

4.6.6 IOCTL_CAN_GET_STATUS_REG (0x07)

Description: Returns the current state of the SJA1000T status register (SJASR).

Parameters: Constants shown are defined in CANApp.h .

dwIoControlCode

[in] Set to IOCTL_CAN_GET_STATUS_REG.

lpOutBuffer

[in] References the BYTE typed variable that will receive the status register state

nOutBufferSize

[in] Set to sizeof(BYTE).

Availability: CAN driver v 1.0 and later.

Remarks: The status register is defined in SJA1000.h . If nOutBufferSize is less than

sizeof(BYTE), then DeviceIoControl() returns FALSE and

GetLastError() will return CAN_ERROR_OUTPUT_BUFFER_TOO_SMALL.

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 20

4.6.7 IOCTL_CAN_CLEAR_QUEUE (0x08)

Description: Flushes the driver’s receive queue.

Parameters: Constants shown are defined in CANApp.h .

dwIoControlCode

[in] Set to IOCTL_CAN_CLEAR_QUEUE.

Availability: CAN driver v 1.0 and later.

4.6.8 IOCTL_CAN_GET_NUM_MSGS (0x09)

Description: Returns the number of CAN messages currently stored in the driver receive queue.

Parameters: Constants shown are defined in CANApp.h .

dwIoControlCode

[in] Set to IOCTL_CAN_GET_NUM_MSGS.

lpOutBuffer

[in] References the UINT typed variable that will receive the number of messages in

the receive queue.

nOutBufferSize

[in] Set to sizeof(UINT).

Availability: CAN driver v 1.0 and later.

Remarks: If nOutBufferSize is less than sizeof(UINT), then DeviceIoControl()

returns FALSE and GetLastError() will return

CAN_ERROR_OUTPUT_BUFFER_TOO_SMALL.

4.6.9 IOCTL_CAN_GET_SAMPLE_POINT (0x0A)

Description: Returns the current sample point as a percentage (i.e. interpret a returned value of 75

as “75%”).

Parameters: Constants shown are defined in CANApp.h .

dwIoControlCode

[in] Set to IOCTL_CAN_GET_SAMPLE_POINT.

lpOutBuffer

[in] References the ULONG typed variable that will receive the sample point value.

nOutBufferSize

[in] Set to sizeof(ULONG).

Availability: CAN driver v 1.4 and later.

Remarks: If nOutBufferSize is less than sizeof(ULONG), then

DeviceIoControl() returns FALSE and GetLastError() will return

CAN_ERROR_OUTPUT_BUFFER_TOO_SMALL.

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 21

4.6.10 IOCTL_CAN_SET_SAMPLE_POINT (0x0B)

Description: Sets the CAN sample point as the close as possible to the value provided.

Parameters: Constants shown are defined in CANApp.h .

dwIoControlCode

[in] Set to IOCTL_CAN_SET_SAMPLE_POINT.

lpInBuffer

[in] References a ULONG typed variable that contains the new sample point as a

percentage value.

nInBufferSize

[in] Set to sizeof(ULONG).

Availability: CAN driver v 1.4 and later.

Remarks: The input value will be interpreted as a percentage (i.e. an integer value of 75 will

result in a sample point at 75%) and must be within the range of 0 to 100. Use

IOCTL_CAN_GET_SAMPLE_POINT to read the actual value from the CAN

controller. If nInBufferSize does not match sizeof(ULONG),

DeviceIoControl() returns FALSE and GetLastError() will return

CAN_ERROR_INPUT_BUFFER_WRONG_SIZE. If nInBuffer is greater than

100 the error generated is CAN_ERROR_INPUT_OUT_OF_RANGE.

4.6.11 IOCTL_CAN_FLUSH_MSGS (0x0C)

Description: Removes a specified number of messages from the CAN receive queue.

Parameters: Constants shown are defined in CANApp.h .

dwIoControlCode

[in] Set to IOCTL_CAN_FLUSH_MSGS.

lpInBuffer

[in] References a ULONG typed variable that contains the number of messages to

remove from the receive queue.

nInBufferSize

[in] Set to sizeof(ULONG).

lpOutBuffer

[in] References the ULONG typed variable that will receive the number of messages

deleted.

nOutBufferSize

[in] Set to sizeof(ULONG).

Availability: CAN driver v 1.5 and later.

Remarks: The number of messages to flush is passed as integer in the “lpInBuffer”

parameter of “DeviceIoControl”. In case that number is greater than or equal to

the actual number of messages existing in the queue, the queue content is cleared. If

the number passed is less than the queue message count, then messages will be

disregarded starting with the oldest ones in the queue.

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 22

4.6.12 IOCTL_CAN_GET_DRIVER_VERSION (0xA0)

Description: Returns the specification version number.

Parameters: Constants shown are defined in CANApp.h .

dwIoControlCode

[in] Set to IOCTL_CAN_GET_DRIVER_VERSION.

lpOutBuffer

[in] References the wchar_t typed array that will receive the version string. The

returned value is a null terminated Unicode string.

nOutBufferSize

[in] Set to the size of supplied buffer, e.g. 128 bytes.

Availability: CAN driver v 1.2 and later.

Remarks: The lpOutBuffer parameter to DeviceIoControl() must be a pointer to a

wchar_t buffer of sufficient size to accept the string or a failure will occur. If

nOutBufferSize is less than the version string + 1, then

DeviceIoControl() returns FALSE and GetLastError() will return

CAN_ERROR_OUTPUT_BUFFER_TOO_SMALL.

4.7 Driver Events

The CAN driver uses events to notify applications that messages are available, or that an error has

occurred. The names of the events can be modified in the CE registry. The default name and

triggering condition of each event is listed in the table below.

The message, error, and overrun events are all pulsed by the driver, while the DataReadyEvent is

set and reset. A pulsed event is automatically reset when at least one thread waiting on it has been

released.. This means that a thread must be waiting on the event at the moment it is pulsed in order to

receive it, or it will be missed. For example, if a thread begins waiting for the message event after a

message has been received, the event for that message will be missed.

The CAN driver provides a data ready event that is set when messages are ready in the receive queue,

and that is reset when the queue is empty. The decision to use either the message event or data ready

event to detect new CAN messages should depend on the application architecture.

The event name shown in the following listing is for the first CAN driver (CAN1:). Increment the last

digit if additional drivers are loaded.

The Registry field is the name of the registry key that can set a different event name.

4.7.1 Data in Receive Queue

Description: Set when there are messages in the receive queue. Reset when the queue is empty.

Default Name: EV_DATA_RDY0

Data: None

Registry Key: DataReadyEvent

Availability: CAN driver v 1.3 and later.

Remarks: In most applications, use this event for processing messages in the event queue.

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 23

4.7.2 New Message Received

Description: Pulsed each time a CAN message arrives in the queue.

Default Name: EV_APP0

Data: None

Registry Key: MessageEvent

Remarks: This event can be used to determine message frequency, but is not used in most

applications. To ensure that no messages are missed, perform very little processing

after the event triggers.

4.7.3 CAN Controller Buffer Overflow

Description: Pulsed when the SJA1000T input buffer has overflowed (DOI bit is set in the

SJA1000T interrupt register).

Default Name: EV_OVRERR0

Data: None

Registry Key: OverrunEvent

Remarks: You may need to increase the CAN thread priority so the driver can service

incoming messages more quickly. Another option is to dump some number of older

messages in the queue to leave space for newer messages.

4.7.4 CAN Controller Error

Description: Pulsed when EI (Error Warning Interrupt) or BEI (Bus Error Interrupt) bits in the

SJA1000T interrupt register have been set.

Default Name: EV_ERR0

Data: None

Registry Key: ErrorEvent

4.7.5 CAN Data Queue Full

Description: Set when a message is lost due to a full data queue. Reset when queue is no longer

full.

Default Name: EV_CAN_DATAQ_FULL

Data: None

Registry Key: CanDataQFullEvent

Remarks: The queue full condition can be cleared by a Readfile() or IOCTL_FLUSH_MSGS

command. When the data queue is full, each new message overwrites the oldest

message in the queue. In this condition the queue always contains the newest

messages.

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 24

4.7.6 CAN Queue Threshold Reached

Description: Set as long as message queue is over half full.

Default Name: EV_CAN_DATAQ_THRESHOLD

Data: None

Registry Key: CanDataQThresholdEvent

Remarks: The driver resets this event when the queue is less than half full. The Readfile(),

the IOCTL_CAN_FLUSH_MSGS, and the IOCTL_CAN_CLEAR_QUEUE command

can bring the queue size smaller than the threshold.

4.8 Error Codes

If a driver function call fails, calling GetLastError() may return one of the following error codes

defined in ADSError.h:

CAN_ERROR_OUTPUT_BUFFER_TOO_SMALL
The output buffer provided is insufficient to contain the data required.

CAN_ERROR_INPUT_BUFFER_WRONG_SIZE
The input buffer provided does not match the size expected.

CAN_ERROR_INVALID_HANDLE
The CAN port handle is invalid.

CAN_ERROR_CANNOT_OPEN_DEVICE
The CAN port cannot be opened.

CAN_ERROR_CANNOT_ALLOC_MEMORY
There was an error while attempting to allocate memory.

CAN_ERROR_BUS_OFF

The SJA1000T CAN controller is currently in the BUS_OFF state. When this error occurs call

DeviceIoControl() with the IOCTL_RESET_CHIP constant.

CAN_ERROR_INPUT_OUT_OF_RANGE
The value of the input provided was outside the valid range.

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 25

5 Creating a CAN Application
This section lists the CAN header file and provides sample code and references as a starting point for

creating your own CAN applications.

5.1 Header Files

CANApp.h
CANApp.h is the header file for the CAN driver. It defines the constants required to use the CAN

driver and is typically included in applications.

This header file is available in source code form from the ADS support web site and is provided here

as a reference.

// CANapp.h

//

// Applied Data Systems

//

// Description

// -----------

// This header file is to be used by applications interfacing

// with the ADS PeliCAN v1.1 Driver. It contains all necessary device

// IOCTL, flag, and message definitions.

#ifndef __CANAPP_H

#define __CANAPP_H

// CAN message structure

typedef struct _CAN_MSg

{

 SHORT length;

 ULONG id;

 SHORT flags;

 union

 {

 BYTE data[8];

 WORD wData[4];

 DWORD dwData[2];

 LONGLONG lData;

 };

}CAN_MSG;

// Definitions to use for CAN_MSG flags

#define MSG_RTR (1<<0) // Remote Transmission Request flag

#define MSG_EXT (1<<1) // Extended identifier format flag

/* Acceptance filter message structure */

typedef struct __CAN_MSG_FILTER

{

 BOOL mode ; // set to 0 for dual filter mode, or 1 for single

 BYTE code0 ;

 BYTE code1 ;

 BYTE code2 ;

 BYTE code3 ;

 BYTE mask0 ;

 BYTE mask1 ;

 BYTE mask2 ;

 BYTE mask3 ;

} CAN_MSG_FILTER, *PCAN_MSG_FILTER;

#define IOCTL_CAN_SET_ACCEPTANCE_FILTER 0x01

#define IOCTL_CAN_GET_ACCEPTANCE_FILTER 0x02

#define IOCTL_CAN_SET_BAUDRATE 0x03

#define IOCTL_CAN_GET_BAUDRATE 0x04

 Windows CE SJA100T CAN Driver Specification v1.5

ADS document # 110025-10036 Page 26

#define IOCTL_CAN_RESET_CHIP 0x05

#define IOCTL_CAN_SEND_COMMAND 0x06

#define IOCTL_CAN_GET_STATUS_REG 0x07

#define IOCTL_CAN_CLEAR_QUEUE 0x08

#define IOCTL_CAN_GET_NUM_MSGS 0x09

#define IOCTL_CAN_GET_SAMPLE_POINT 0x0A

#define IOCTL_CAN_SET_SAMPLE_POINT 0x0B

#define IOCTL_CAN_GET_DRIVER_VERSION 0xA0

#define IOCTL_CAN_FLUSH_MSGS 0x0C

// Deprecated

#define IOCTL_RESET_CHIP 0x05

#define IOCTL_SEND_COMMAND 0x06

#define IOCTL_GET_DRIVER_VERSION 0xA0

#endif __CANAPP_H

5.2 Sample Applications

For a detailed sample application, see the ADS Support Forums topic 1739, eVC CAN Sample

Application. This application spawns either the sender or receiver thread under keyboard control, and

then processes user input until user chooses to quit. The user is also prompted for the baud rate for data

transmission.

