

Software Specification

For

J1708 Driver

11025-10041
Version 1.0

Last Revision: December 8, 2004

Applied Data Systems, Inc. 2

Document History:
Version Date By Notes
1.0 12/9/2004 MSS Initial Draft

Applied Data Systems, Inc. 3

Introduction

The J1708 driver was written to support an interface to this bus on the AGX platform via a third
party adapter. The adapter connects to serial port 1 and is powered by the platform. This adapter
performs the required RS232 to RS485 signal conversions and it also provides a signal for gating
write access to the bus. This signal is also used as a packet delimiter for bus read operations and
therefore this implementation only supports P1 priority adapters. The user can replace the
standard serial driver for port 1 with the J1708 driver by inserting the supported registry keys
into the platform ADSLOAD.REG file.

Supported Registry Keys

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Serial]
 "Dll"="J1708.dll"
 This is the name of J1708 driver file and must not be changed.
 "FriendlyName"="SAE J1708 Interface"
 This key is optional and has no effect on driver operation.
 "Prefix"="JSP"
 "Index"=dword:1
 These two keys define the driver device name. The prefix cannot be changed. The

index may be any number from 0-9.
 "XmtMID"=dword:120
 This key defines message ID for this platform. Refer to the J1708 specification for

acceptable values.
 "ISTPriority"=dword:32
 This key sets the priority for the driver’s interrupt service thread. This directly affects

the performance of the driver and indirectly the system.
 "RcvPktEventName"="J1708RcvPacketEvent"
 This key defines a named event used by an application for determining when data is

available from the bus.

Applied Data Systems, Inc. 4

Supported Public Functions

The following standard Win32 file I/O functions are supported by this driver. If a call to any of
these functions returns a failure indication, call GetLastError() immediately to obtain a
code to determine the reason.

hFile = CreateFile(
 TEXT("JSP1:"), // Device name
 GENERIC_READ | GENERIC_WRITE, // Access mode
 0, // Not used
 NULL, // Not used
 OPEN_EXISTING, // Always open existing
 0, // Not used
 NULL // Not used
);

The return value from this function is a handle that is used to refer to the open J1708 device in
subsequent file I/O function calls. Only one handle to this driver may be open at one time. This
call will fail if the driver cannot synchronize with the J1708 bus. It does this by waiting for the
bus to become idle before returning.

bResult = DeviceIoControl(
 hFile, // Device handle from CreateFile()
 dwIoControlCode, // See J1708.H for valid codes
 lpInBuffer, // Use of the following parameters
 nInBufferSize, // depends on the particular code
 lpOutBuffer,
 nOutBufferSize,
 lpBytesReturned,
 NULL // Not used
);

An application can use this function to set driver behavior and retrieve driver information. The
following codes can be used, which are defined in the J1708.H header file.

• IOCTL_J1708_DIS_RTL_MSG – Disable driver messages out serial port 3.
• IOCTL_J1708_ENA_RTL_MSG – Enable driver messages out serial port 3.
• IOCTL_J1708_GET_RCV_PKT_EVT_NAME – Named event that indicates when a

packet is received.
• IOCTL_J1708_GET_DRIVER_STATUS – Internal use only.

Note that driver messages are off by default. The named event is to be used in conjunction with
ReadFile() in order to prevent degradation of system performance. Instead of continually
polling ReadFile() for any available data, the application can wait on the packet receive
event before calling ReadFile().

bResult = PurgeComm(
 hFile, // Device handle from CreateFile()
 PURGE_RXCLEAR // Only this flag is supported
);

This call is used to clear the receive buffer and discard any unwanted packets.

Applied Data Systems, Inc. 5

bResult = ReadFile(
 hFile, // Device handle from CreateFile()
 lpBuffer, // Pointer to incoming data area
 nNumberOfBytesToRead,
 lpNumberOfBytesRead,
 NULL // Not used
);

This call will copy the next available packet into the designated buffer area. This area should be
large enough to hold the packet MID and the packet data. The maximum data size for a J1708
packet is 19 bytes and the MID size is 1 byte, therefore a 20 byte buffer should be sufficient for
all J1708 packets. This value is constant and is always passed to the function using the
nNumberOfBytesToRead parameter. The lpNumberOfBytesRead parameter will be
zero after the function call if no data is available. Otherwise, it indicates the size of the retrieved
packet. This function will indicate failure if a bad packet checksum is detected, the receive buffer
is too small to contain the requested packet, or the size of the packet received exceeded the
maximum size allowed by the J1708 standard.

bResult = WriteFile(
 hFile, // Device handle from CreateFile()
 lpBuffer, // Pointer to outgoing data
 nNumberOfBytesToWrite,
 lpNumberOfBytesWritten,
 NULL // Not used
);

A call to this function will form a J1708 packet and transmit it on the bus. The call will not
return until the packet is transmitted or an error occurs. The amount of data to send is indicated
in the nNumberOfBytesToWrite parameter and it cannot exceed 19 bytes as defined by
J1708_MAX_DATA_SIZE in the J1708.H header file, otherwise the function fails. A packet is
formed by pre-pending the data in lpBuffer with the transmitter MID character obtained from
the registry and appending a one byte twos-complement checksum computed using the MID and
the given data. This forms a maximum allowable packet on the J1708 bus of 21 bytes. Packets
may be smaller if so desired. A successful will return TRUE in bResult and
lpNumberOfBytesWritten will be equal to nNumberOfBytesToWrite.

bResult = CloseHandle(
 hFile // Device handle from CreateFile()
);

This call closes the driver by releasing the handle and other acquired resources allocated when
the driver was opened.

Applied Data Systems, Inc. 6

Supported Constants

The constants below are defined in the J1708.H header file.

J1708_MAX_DATA_SIZE - Maximum number of data bytes per J1708 packet
J1708_MID_CHAR_SIZE - Number of bytes per MID character

IOCTL_J1708_DIS_RTL_MSG - Turns off driver messages
IOCTL_J1708_ENA_RTL_MSG - Turns on driver messages
IOCTL_J1708_GET_RCV_PKT_EVT_NAME - Returns the name of the packet receive event in a string
IOCTL_J1708_GET_DRIVER_STATUS - Internal use only

J1708_ERROR_BAD_CHECKSUM - Received a bad packet
J1708_ERROR_BUFFER_OVERFLOW - Packet size exceeded amount allowed by J1708 standard
J1708_ERROR_PACKET_OVERRUN - A newly received packet over-wrote an old one
J1708_ERROR_DRIVER_ALREADY_OPEN - Only one handle per driver
J1708_ERROR_CANNOT_INIT_INTRPT - The UART interrupt could not be allocated to this driver
J1708_ERROR_TX_PACKET_TOO_BIG - The application tried to send a packet that was too big
J1708_ERROR_CANNOT_ENABLE_UART - The driver cannot synchronize with the J1708 bus
J1708_ERROR_RX_BUFFER_TOO_SMALL - The application has not allocated enough space to hold a packet

