
ADS document # 110025-10056 Page 1

ADS Windows CE Digital I/O Driver

Specification Version 1.2
ADS Document 110025-10056

Windows CE Digital I/O Driver Specification v1.2

Page 2 ADS document # 110025-10056

Introduction
The purpose of the Digital I/O (DIO) driver is to encapsulate all available digital I/O lines in a single
stream driver interface. Each I/O line is represented as one bit in a 32-bit DIO register. This register can
be read and written to using the standard ReadFile and WriteFile functions. I/O Control codes provide
additional functionality such as setting the line direction (i.e. input or output) and masking individual lines.

Theory of Operation
This section describes how the ADS DIO driver interacts with system hardware. Details about the settings
and APIs are listed in the following sections, Using the Driver and API Reference.

Reading Line States
The current state of any DIO line can be read using the ReadFile function. ReadFile reads the states of all
32 DIO lines and associates each with a bit in the DIO register. The state of the register is stored in the 32-
bit location (4 bytes) pointed to by lpBuffer. If a line is masked (see below), its state will always be read as
zero.

Writing Line States
The current state of any DIO line can be set using the WriteFile function. WriteFile maps the 4 byte
location pointed to by lpBuffer to the 32-bit DIO register and writes the bit values to their corresponding
lines. If a line is masked, its state will be unaffected by a write.

Line Settings
DIO line direction settings are managed through I/O control functions. These functions determine which
lines can be inputs, which can be outputs, and get and set the current direction of each line. The direction
of a masked line is unaffected by these functions.

Line Masking
Individual DIO lines can be masked by setting them in the DIO mask. Masked lines will be unaffected by
all operations in the DIO driver. The DIO mask can be accessed through the
DIO_IOCTL_GET_DRIVER_MASK and DIO_IOCTL_SET_DRIVER_MASK I/O controls. At boot
the driver mask is 0x00 (all lines unmasked).

Interrupts
Individual DIO lines may be enabled to generate interrupts. The availability of this feature depends on the
platform. The DIO_IOCTL_CAPABLE_INT I/O control can be used to find out which DIO lines are
interrupt capable. When a DIO line is enabled as an interrupt, it is associated with a trigger mode which
determines what condition will cause the interrupt to occur. Also, each interrupt capable DIO line has a
unique event, which can be configured in the registry. When a DIO interrupt is triggered, the driver pulses
the corresponding event.

System Wake
Some interrupt lines on some systems can provide the ability to wake the system from sleep. Availability
can be checked using the DIO_IOCTL_CAPABLE_WAKEUP_INT I/O control. DIO lines that use this
functionality should be enabled with the appropriate wake-up trigger mode.

 Windows CE Digital I/O Driver Specification v1.2

ADS document # 110025-10056 Page 3

Using the Driver

Driver Name
The Digital I/O driver is referenced with the filename DIO1:.

Files
The following files are useful for developers of DIO applications:

DIO.dll Digital IO Driver Library

DIOapp.h Header file for DIO driver constants

ADSerror.h Header file for ADS error codes

Supported Registry Keys
The following registry values can be used to modify the Digital I/O driver behavior. All are values under
the [HKEY_LOCAL_MACHINE\Drivers\BuiltIn\DIO] registry key. These settings can be
modified by changing the ADSLOAD.REG file or by changing the registry and persisting it using either
ADS tools or hive-based images.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\DIO]
"DIOEvent[n]"="DIOInt[n]"

Default Value: DIOInt[n]
Supported Values: n ranges from 0 to the maximum number of interrupt-supported lines
Description: There will be one key for each interrupt-capable bit in the driver, starting with DIOEvent0.
These keys provide the ability to override the string used for the event name the driver will use for
signaling when an interrupt has occurred. By default these values will be “DIOInt[n]”
For example, if a platform has a single interrupt-capable bit, it will have the following registry entry:

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\DIO]
"DIOEvent0"="DIOInt0"

When an interrupt occurs on the line, the driver will pulse of set an event (see UseSetEvent key
documentation below for more information) created with the name “DIOInt0”.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\DIO]
"UseSetEvent"=dword:0

Default Value: 0x00
Supported Values: 0x00 or 0x01
Description: Determines whether the driver uses SetEvent or PulseEvent to signal an interrupt has been
detected (see Driver Events section below).

Driver Events
By default, when a DIO interrupt is triggered, the driver sets the event associated with that line with a call
to PulseEvent. The driver can be configured to use SetEvent instead of PulseEvent through the
registry key outlined in the previous section. For each interrupt capable line available on a system, there
will be a registry key called DIOEventX, where X is the DIO bit position of the line it corresponds to. The
value of each key is the name of the event that will be pulsed when that interrupt is triggered. These event
names are DIOInt0, DIOInt1, etc. by default, but can be modified by changing the name in the registry.

Windows CE Digital I/O Driver Specification v1.2

Page 4 ADS document # 110025-10056

API Reference
Windows CE applications access the ADS Digital I/O driver using the standard Windows stream interface
functions (CreateFile, ReadFile, WriteFile and DeviceIoControl).

HANDLE CreateFile(lpFileName, dwDesiredAccess, dwShareMode,
lpSecurityAttributes, dwCreationDispostion, dwFlagsAndAttributes,
hTemplateFile)

Opens the DIO driver and returns a handle to access it with. Returns NULL if an error occurred.
GetLastError can be used to retrieve a specific error code. ADS error codes are listed in the file
ADSerror.h and described in the “Error Codes” section of this document.

Example:
HANDLE hDioPort;
hDioPort = CreateFile(_T("DIO1:"),

GENERIC_WRITE | GENERIC_READ,
0,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL);

BOOL ReadFile(hFile, lpBuffer, nNumberOfBytesToRead,
lpNumberOfBytesRead, lpOverlapped)

 Reads the state of the DIO register into the location pointed to by lpBuffer. nNumberOfBytesToRead
must be DIO_SIZE. Returns TRUE if successful or FALSE if there is an error. If FALSE is returned,
GetLastError can be used to retrieve the error code. ADS error codes are listed in the file ADSerror.h
and described in the “Error Codes” section of this document.. Unsupported or masked bit states are
considered undefined and the bit state read may or may not reflect the actual state.

Example:
DWORD dwState;
DWORD dwBytesRead;

if(!ReadFile(hDioPort, &dwState, DIO_SIZE, &dwBytesRead, NULL))
{
 RETAILMSG(TRUE, (_T("ReadFile : GetLastError() returned %i"), GetLastError()));
}

BOOL WriteFile(hFile, lpBuffer, nNumberOfBytesToWrite,
lpNumberOfBytesWritten, lpOverlapped)

Writes the four bytes of data (DIO_SIZE) pointed to by lpBuffer to the DIO register.
nNumberOfBytesToWrite must be DIO_SIZE. Returns TRUE if successful or FALSE if there is an
error. If FALSE is returned, GetLastError can be used to retrieve the error code. ADS error codes
are listed in the file ADSerror.h. Unsupported or masked bits are ignored.

Example:
DWORD dwState = 0x00FF;
DWORD dwBytesWritten;
...
if(!WriteFile(hDioPort, &dwState, DIO_SIZE, &dwBytesWritten, NULL))
{
 RETAILMSG(TRUE, (_T("WriteFile : GetLastError() returned %i"), GetLastError()));
}

 Windows CE Digital I/O Driver Specification v1.2

ADS document # 110025-10056 Page 5

BOOL DeviceIoControl(hDevice, dwIoControlCode, lpInBuffer,
nInBufferSize, lpOutBuffer, nOutBufferSize, lpBytesReturned,
lpOverlapped)

Provides an additional set of DIO functions. These functions are listed in the next section. Input
parameters are passed to these functions through lpInBuffer, and outputs are returned in lpOutBuffer.
Returns TRUE if successful or FALSE if there is an error. If FALSE is returned, GetLastError can
be used to retrieve the error code. ADS error codes are listed in the file ADSerror.h.
Example:
DWORD DIODir = 0;
DWORD NumberOfBytesRead = 0;
DWORD NumberOfBytesWritten = 0;

// Get the current DIO direction.
if(!DeviceIoControl(hDIO, DIO_IOCTL_GET_DIRECTION, NULL, 0, &DIODir, DIO_SIZE, \
 &NumberOfBytesRead, NULL))
{
 RETAILMSG(TRUE, (_T("DeviceIoControl : GetLastError() returned %i"), \
 GettLastError()));
 return FALSE;
}

BOOL CloseHandle(hObject)

Closes the DIO driver referenced by hObject. Returns TRUE if successful or FALSE if there is an
error.

Example:
CloseHandle(hCanPort);

DWORD Seek(hOpenContext, Amount, Type)

Calls to the Seek function have no effect and always return DIO_ERROR_NOT_IMPLEMENTED.

Windows CE Digital I/O Driver Specification v1.2

Page 6 ADS document # 110025-10056

I/O Controls
The I/O control codes listed below provide access to additional functionality in the ADS Digital I/O driver.
Usage of DeviceIoControl is described in the previous section.

DIO_IOCTL_INPUT (0x00): Returns a four-byte bit mapping of the DIO register with bits corresponding
to input lines set to 1 and all others set to 0. The bit mapping is returned in lpOutBuffer.

DIO_IOCTL_OUTPUT (0x01): Returns a four-byte bit mapping of the DIO register with bits
corresponding to output lines set to 1 and all others set to 0. The bit mapping is returned in lpOutBuffer.

DIO_IOCTL_HIGH (0x02): Returns a four-byte bit mapping of the DIO register with bits corresponding
to logic high lines set to 1 and all others set to 0. The bit mapping is returned in lpOutBuffer.

DIO_IOCTL_LOW (0x03): Returns a four-byte bit mapping of the DIO register with bits corresponding
to logic low lines set to 1 and all others set to 0. The bit mapping is returned in lpOutBuffer.

DIO_IOCTL_CAPABLE_INPUTS (0x100): Returns a four-byte bit mapping of the DIO register with
bits corresponding to lines capable of being inputs set to 1 and all other lines set to 0. The bit mapping is
returned in lpOutBuffer.

DIO_IOCTL_CAPABLE_OUTPUTS (0x101): Returns a four-byte bit mapping of the DIO register with
bits corresponding to lines capable of being outputs set to 1 and all others set to 0. The bit mapping is
returned in lpOutBuffer.

DIO_IOCTL_GET_DRIVER_MASK (0x102): Returns a four-byte bit mapping of the DIO register with
bits corresponding to lines that are masked set to 1 and all others set to 0. The bit mapping is returned in
lpOutBuffer.

DIO_IOCTL_SET_DRIVER_MASK (0x103): Reads a DIO bit mapping provided in lpInBuffer. Lines
that are set to 1 in the mapping are set as masked lines and lines set to 0 in the mapping are set as unmasked
lines.

DIO_IOCTL_GET_DIRECTION (0x104): Returns a four-byte bit mapping of the DIO register with bits
corresponding to output lines set to 1 and inputs set to 0. The bit mapping is returned in lpOutBuffer.

DIO_IOCTL_SET_DIRECTION (0x105): Reads a DIO bit mapping provided in lpInBuffer. Lines that
are set to 1 in the mapping are set as outputs and those set to zero are inputs. The direction of masked lines
is not changed.

DIO_IOCTL_CAPABLE_INT (0x110): Returns a four-byte bit mapping of the DIO register with bits
corresponding to interrupt capabilities of the lines. Lines capable of generating interrupts are set to 1 and
that are not capable of interrupts are 0. The bit mapping is returned in lpOutBuffer.

DIO_IOCTL_CAPABLE_WAKEUP_INT (0x111): Returns a four-byte bit mapping of the DIO register
with bits corresponding to wake interrupt capabilities of the lines. Lines capable of waking the system on
an interrupt are set to 1 and that are not are 0. The bit mapping is returned in lpOutBuffer.

DIO_IOCTL_GET_INT (0x112): Reads the four-byte bit mapping of the DIO register referenced by
lpInBuffer. The mapping must contain one and only one set bit. The current trigger mode of the DIO
interrupt corresponding to the set bit will be returned in the DIO_SIZEd location referenced by
lpOutBuffer.

DIO_IOCTL_ENABLE_INT (0x113): Reads the DIO_INT structure referenced by lpInBuffer. The
IntMask member must contain one and only one set bit. If the line corresponding to this bit is interrupt
capable, the interrupt will be enabled with the trigger mode specified by the TriggerMode member of the
DIO_INT structure. If the trigger mode given is invalid, no interrupt will be enabled and GetLastError will
return DIO_ERROR_INVALID_INPUT.

 Windows CE Digital I/O Driver Specification v1.2

ADS document # 110025-10056 Page 7

DIO_IOCTL_DISABLE_INT (0x114): Reads a DIO bit mapping referenced by lpInBuffer. If a bit is set
to 1 and corresponds to a line with an interrupt enabled, the interrupt will be disabled. Setting any other
bits will have no effect. Enabled masked interrupt lines will not be disabled.

DIO_IOCTL_SET_INT_THREAD_PRIORITY (0x115): Sets the thread priority for driver’s internal
threads that monitor for interrupts and marshal them to driver events. The driver’s default interrupt thread
priority is 240.

IOCTL_GET_DRIVER_VERSION (0xA0): Retrieves the specification version that the current driver
adheres to in null-terminated string format (i.e. “1.2\0”). The lpOutBuffer parameter to
DeviceIoControl must be a pointer to a wchar_t buffer of sufficient size (10 characters) to accept the
string or a failure will occur.

Error Codes
If a driver function call fails, calling GetLastError may return one of the following error codes defined in
ADSError.h:

The following DIO error codes are defined in ADSError.h:

DIO_UNSPECIFIED_ERROR

 A DIO error occurred but its cause was not determined.

DIO_NO_ERROR

 No error occurred.

DIO_ERROR_FILE_NOT_OPEN

 The DIO port is not open.

DIO_ERROR_NO_READ_PERMISSION

 You don’t have read permission to the DIO port.

DIO_ERROR_NO_WRITE_PERMISSION

 You don’t have write permission to the DIO port.

DIO_ERROR_OUTPUT_BUFFER_TOO_SMALL

 A larger sized output buffer is required.

DIO_ERROR_INPUT_BUFFER_WRONG_SIZE

 The size of the input buffer is not the expected size.

DIO_ERROR_NOT_IMPLEMENTED

 The requested function is not implemented.

Windows CE Digital I/O Driver Specification v1.2

Page 8 ADS document # 110025-10056

GPIO Bit to Signal Maps

GPIO Bit to Signal Map : VGX
Bit Signal Name Location

0x00 GC_GPIO0 J8.1
0x01 GC_GPIO 1 J8.3
0x02 GC_GPIO 2 J8.5
0x03 GC_GPIO 3 J8.7
0x04 GC_GPIO 4 J8.9
0x05 GC_GPIO 5 J8.10
0x06 GC_GPIO 6 J8.8
0x07 GC_GPIO 7 J8.6
0x08 GC_GPIO 8 J8.4
0x09 GC_GPIO 9 J8.2
0x0A GC_GPIO 10 J8.16
0x0B CPLDIO0 J8.18
0x0C CPLDIO1 J8.20
0x0D CPLDIO2 J8.22
0x0E CPLDIO3 J14.32
0x0F CPLDIO4 J14.34
0x10 CPLDIO5 J14.36
0x11 CPLDIO6 J14.38
0x12 LEDOUT1 LED - Amber
0x13 LEDOUT0 LED - Green
0x14 Reserved -
0x15 Reserved -
0x16 Reserved -
0x17 Reserved -
0x18 Reserved -
0x19 Reserved -
0x1A Reserved -
0x1B Reserved -
0x1C Reserved -
0x1D Reserved -
0x1E Reserved -
0x1F Reserved -

 Windows CE Digital I/O Driver Specification v1.2

ADS document # 110025-10056 Page 9

GPIO Bit to Signal Maps (Continued)

GPIO Bit to Signal Map : GCX
Bit Signal Name Location

0x00 UCB_IO0 J2.1
0x01 UCB_IO1 J2.3
0x02 UCB_IO2 J2.5
0x03 UCB_IO3 J2.7
0x04 UCB_IO4 J2.9
0x05 UCB_IO5 J2.10
0x06 UCB_IO6 J2.8
0x07 UCB_IO7 J2.6
0x08 UCB_IO8 J2.4
0x09 UCB_IO9 J2.2
0x0A GPIO6 J7.38
0x0B GPIO8 J7.36
0x0C GPIO9 J7.34
0x0D GPIO12 J7.32
0x0E NSSP_SCLK J2.25
0x0F NSSP_SFRM J2.23
0x10 NSSP_TDX J2.21
0x11 NSSP_RXD J2.19
0x12 LEDOUT1 LED - Amber
0x13 LEDOUT0 LED - Green
0x14 Reserved -
0x15 Reserved -
0x16 Reserved -
0x17 Reserved -
0x18 Reserved -
0x19 Reserved -
0x1A Reserved -
0x1B Reserved -
0x1C Reserved -
0x1D Reserved -
0x1E Reserved -
0x1F Reserved -

Windows CE Digital I/O Driver Specification v1.2

Page 10 ADS document # 110025-10056

GPIO Bit to Signal Maps (Continued)

GPIO Bit to Signal Map : BitsyX
Bit Signal Name Location

0x00 EIO0 J10.8
0x01 EIO1 J10.6
0x02 EIO2 J10.4
0x03 EIO3 J10.2
0x04 EIO4 J10.5
0x05 EIO5 J3.12
0x06 EIO6 J3.14
0x07 EIO7 J3.3
0x08 EIO8 J3.2
0x09 EIO9 J3.1
0x0A LEDOUT0 LED - Green
0x0B Reserved -
0x0C Reserved -
0x0D Reserved -
0x0E Reserved -
0x0F Reserved -
0x10 Reserved -
0x11 Reserved -
0x12 Reserved -
0x13 Reserved -
0x14 Reserved -
0x15 Reserved -
0x16 Reserved -
0x17 Reserved -
0x18 Reserved -
0x19 Reserved -
0x1A Reserved -
0x1B Reserved -
0x1C Reserved -
0x1D Reserved -
0x1E Reserved -
0x1F Reserved -

 Windows CE Digital I/O Driver Specification v1.2

ADS document # 110025-10056 Page 11

GPIO Bit to Signal Maps (Continued)

GPIO Bit to Signal Map : AGX
Bit Signal Name Location

0x00 EPSON_GPIO0 J8 PIN 1
0x01 EPSON_GPIO1 J8 PIN 3
0x02 EPSON_GPIO2 J8 PIN 5
0x03 EPSON_GPIO3 J8 PIN 7
0x04 EPSON_GPIO4 J8 PIN 9
0x05 EPSON_GPIO5 J8 PIN 2
0x06 EPSON_GPIO6 J8 PIN 4
0x07 EPSON_GPIO7 J8 PIN 6
0x08 EPSON_GPIO8 J8 PIN 8
0x09 EPSON_GPIO9 J8 PIN 10
0x0A EPSON_GPIO10 J8 PIN 16
0x0B CPLD_GPIO0 J8 PIN 18
0x0C CPLD_GPIO1 J8 PIN 20
0x0D CPLD_GPIO2 J8 PIN 22

0x0E PXA_GPIO19 LED
YELLOW

0x0F PXA_GPIO20 LED GREEN
0x10 PXA_GPIO21 LED RED
0x11 Reserved -
0x12 Reserved -
0x13 Reserved -
0x14 Reserved -
0x15 Reserved -
0x16 Reserved -
0x17 Reserved -
0x18 Reserved -
0x19 Reserved -
0x1A Reserved -
0x1B Reserved -
0x1C Reserved -
0x1D Reserved -
0x1E Reserved -
0x1F Reserved -

Windows CE Digital I/O Driver Specification v1.2

Page 12 ADS document # 110025-10056

GPIO Bit to Signal Maps (Continued)

GPIO Bit to Signal Map : BitsyXb
Bit Signal Name Location

0x00 UCBIO0 J10.8
0x01 UCBIO1 J10.6
0x02 UCBIO2 J10.4
0x03 UCBIO3 J10.2
0x04 UCBIO4 J10.5
0x05 UCBIO5 J3.12
0x06 UCBIO6 J3.14
0x07 UCBIO7 J3.3
0x08 UCBIO8 J3.2
0x09 UCBIO9 J3.1
0x0A LEDOUT0 LED - Green
0x0B Reserved -
0x0C Reserved -
0x0D Reserved -
0x0E Reserved -
0x0F Reserved -
0x10 Reserved -
0x11 Reserved -
0x12 Reserved -
0x13 Reserved -
0x14 Reserved -
0x15 Reserved -
0x16 Reserved -
0x17 Reserved -
0x18 Reserved -
0x19 Reserved -
0x1A Reserved -
0x1B Reserved -
0x1C Reserved -
0x1D Reserved -
0x1E Reserved -
0x1F Reserved -

 Windows CE Digital I/O Driver Specification v1.2

ADS document # 110025-10056 Page 13

GPIO Bit to Signal Maps (Continued)

GPIO Bit to Signal Map : Sphere
Bit Signal Name Location

0x00 PORTA-Bit1 J4.19
0x01 PORTA-Bit6 J4.20
0x02 PORTB-Bit10 J4.22
0x03 PORTB-Bit11 J4.23
0x04 PORTB-Bit12 J4.24
0x05 PORTB-Bit13 J4.25
0x06 PORTB-Bit14 J4.26
0x07 PORTE-Bit0 Red LED
0x08 PORTE-Bit1 Green LED
0x09 PORTC-Bit0 J11.1
0x0A PORTC-Bit1 J11.2
0x0B PORTC-Bit2 J11.3
0x0C PORTC-Bit3 J11.4
0x0D PORTC-Bit4 J11.5
0x0E PORTC-Bit5 J11.6
0x0F PORTC-Bit6 J11.7
0x10 PORTC-Bit7 J11.8
0x11 PORTD-Bit0 J11.9
0x12 PORTD-Bit1 J11.10
0x13 PORTD-Bit2 J11.11
0x14 PORTD-Bit3 J11.12
0x15 PORTD-Bit4 J11.13
0x16 PORTD-Bit5 J11.14
0x17 PORTD-Bit6 J11.15
0x18 PORTD-Bit7 J11.16
0x19 Reserved -
0x1A Reserved -
0x1B Reserved -
0x1C Reserved -
0x1D Reserved -
0x1E Reserved -
0x1F Reserved -

To disable keypad scanning and use the pins as GPIOs’ change the registry setting in adsload.reg.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\DIO1
"EnableAltGPIO "=dword:0 ; “1” enable scanning, “0” disable scanning

Windows CE Digital I/O Driver Specification v1.2

Page 14 ADS document # 110025-10056

DIO Application Header File: DIOApp.h

#ifndef DIO_APP_H
#define DIO_APP_H

// IOCTLs
#define DIO_IOCTL_INPUT 0x00
#define DIO_IOCTL_OUTPUT 0x01
#define DIO_IOCTL_HIGH 0x02
#define DIO_IOCTL_LOW 0x03

#define DIO_IOCTL_CAPABLE_INPUTS 0x100
#define DIO_IOCTL_CAPABLE_OUTPUTS 0x101
#define DIO_IOCTL_GET_DRIVER_MASK 0x102
#define DIO_IOCTL_SET_DRIVER_MASK 0x103
#define DIO_IOCTL_GET_DIRECTION 0x104
#define DIO_IOCTL_SET_DIRECTION 0x105

#define DIO_IOCTL_CAPABLE_INT 0x110
#define DIO_IOCTL_CAPABLE_WAKEUP_INT 0x111
#define DIO_IOCTL_GET_INT 0x112
#define DIO_IOCTL_ENABLE_INT 0x113
#define DIO_IOCTL_DISABLE_INT 0x114
#define DIO_IOCTL_SET_INT_THREAD_PRIORITY 0x115

typedef struct DIO_INT_T
{
 DWORD IntMask;
 DWORD TriggerMode;
} DIO_INT;

#define DIO_TRIGGER_RISING 0x01
#define DIO_TRIGGER_FALLING 0x02
#define DIO_TRIGGER_WAKEUP_RISING 0x04
#define DIO_TRIGGER_WAKEUP_FALLING 0x08
#define DIO_TRIGGER_DISABLED 0x00

// DIO register size in bits
#define DIO_NUM_BITS 32

// DIO register size in bytes
#define DIO_SIZE 4

// DIO register definitions
#define DIO_0 (1 << 0)
#define DIO_1 (1 << 1)
#define DIO_2 (1 << 2)
#define DIO_3 (1 << 3)
#define DIO_4 (1 << 4)
#define DIO_5 (1 << 5)
#define DIO_6 (1 << 6)
#define DIO_7 (1 << 7)
#define DIO_8 (1 << 8)
#define DIO_9 (1 << 9)
#define DIO_10 (1 << 10)
#define DIO_11 (1 << 11)
#define DIO_12 (1 << 12)
#define DIO_13 (1 << 13)
#define DIO_14 (1 << 14)
#define DIO_15 (1 << 15)
#define DIO_16 (1 << 16)
#define DIO_17 (1 << 17)
#define DIO_18 (1 << 18)
#define DIO_19 (1 << 19)
#define DIO_20 (1 << 20)
#define DIO_21 (1 << 21)

 Windows CE Digital I/O Driver Specification v1.2

ADS document # 110025-10056 Page 15

#define DIO_22 (1 << 22)
#define DIO_23 (1 << 23)
#define DIO_24 (1 << 24)
#define DIO_25 (1 << 25)
#define DIO_26 (1 << 26)
#define DIO_27 (1 << 27)
#define DIO_28 (1 << 28)
#define DIO_29 (1 << 29)
#define DIO_30 (1 << 30)
#define DIO_31 (1 << 31)

#define DIO_LINE_UNUSED 0

#endif // DIO_APP_H

Windows CE Digital I/O Driver Specification v1.2

Page 16 ADS document # 110025-10056

Document History
The following list summarizes the changes made between releases of this document.

REV DESCRIPTION BY
0 • First version of document 8/1/04 ct
0 • Initial release. 10/1/04 jc

1 • Updated format to match current document template
• Released a PRELIMINARY 1/12/05 ct

2 • Added missing text and IOCTLS for interrupts and wake, fixed
typos 1/17/05 ct

3 • Added BitsyX Bit to Signal Map 2/9/05 ct
4 • Added LED signals to BitsyX, GCX and VGX 3/14/05 jc

5 • Added SetEvent/PulseEvent differentiation
• Added DIO_IOCTL_SET_INT_THREAD_PRIORITY 1/31/06 ct

• Added BitsyXb signal mapping 8/24/06 jc
• Added Sphere signal mappings 9/5/06 be 6
• Update formatting for release 1/8/07 ak

 Windows CE Digital I/O Driver Specification v1.2

ADS document # 110025-10056 Page 17

Specification History
The following list summarizes the changes made between versions of the specification.

REV DESCRIPTION BY
1.0 Initial release. 1/12/05 ct
1.1 Added the UseSetEvent registry key and support for it in the driver 1/3/06 ct
1.2 Added DIO_IOCTL_SET_INT_THREAD_PRIORITY support 1/31/06

